- sabic() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
-
- sacaic() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
-
- safeMax(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the largest value in a vector of doubles.
- safeMean(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the mean of a vector of doubles.
- safeMin(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the largest value in a vector of doubles.
- safeStdev(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the standard deviation of a vector of doubles.
- same(double, double) - Static method in class com.itemanalysis.psychometrics.measurement.MachineAccuracy
-
- sameItemGroup(ItemResponseSummary) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
Compares this item summary to another one to determine of they
belong to the same item group.
- sampleFromDistribution(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Samples from the distribution over values 0 through d.length given by d.
- sampleFromDistribution(double[], Random) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Samples from the distribution over values 0 through d.length given by d.
- sampleFromDistribution(float[], Random) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Samples from the distribution over values 0 through d.length given by d.
- sampleSize() - Method in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
-
Gets the sample size.
- sampleSize() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
-
- sampleSize() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- sampleSize() - Method in class com.itemanalysis.psychometrics.polycor.Covariance
-
- sampleSize() - Method in class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
-
- sampleStandardDeviation() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
Sample standard deviation (i.e.
- sampleVariance() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
Computes a weighted sample variance (i.e.
- sampleWithoutReplacement(int[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Fills the array with sample from 0 to numArgClasses-1 without replacement.
- sampleWithoutReplacement(int[], int, Random) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Fills the array with sample from 0 to numArgClasses-1 without replacement.
- scale(double, double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Linear transformation of item parameters.
- scale(double, double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Linear transformation of item parameters.
- scale(double, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
Computes a linear transformation of item parameters.
- scale(double, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- scale(double, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- scale(double, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- scale(double, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
Computes a linear transformation of item parameters.
- scale(double, double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Performs a linear transformation of item parameters and standard errors.
- scaleOpt - Variable in class com.itemanalysis.psychometrics.optimization.QNMinimizer.QNInfo
-
- sclmul_f77(int, double, double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
-
The sclmul_f77 method multiplies a vector by a scalar.
- sclmul_f77(int, double, double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
-
The sclmul_f77 method multiplies a vector by a scalar.
- scoreArray() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- scoreArray() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
-
this method creates a double array of all existing options scores.
- scoreArray() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
-
- ScoreBounds - Class in com.itemanalysis.psychometrics.scaling
-
- ScoreBounds() - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
Use this constructor for the default bounds of negative and positive infinity
- ScoreBounds(int) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
Use this constructor for the default bounds of negative and positive infinity
It also allows precision to be set.
- ScoreBounds(Double, Double) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
Use this constructor for providing starting values for an incremental update.
- ScoreBounds(Double, Double, int) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
Use this constructor for providing starting values for an incremental update.
- ScoreBounds(ArrayList<VariableAttributes>, int) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
- ScoreReliability - Interface in com.itemanalysis.psychometrics.reliability
-
- ScoreReliabilityType - Enum in com.itemanalysis.psychometrics.reliability
-
Copyright 2012 J.
- ScoreTable - Class in com.itemanalysis.psychometrics.scaling
-
- ScoreTable(ScoreBounds) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreTable
-
- ScoreTable(ScoreBounds, String) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreTable
-
- ScoreTable(ScoreBounds, int) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreTable
-
- ScoreTable(ScoreBounds, String, int) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreTable
-
- ScoreTable(ScoreBounds, Double, String, int) - Constructor for class com.itemanalysis.psychometrics.scaling.ScoreTable
-
- scoreValue() - Method in class com.itemanalysis.psychometrics.data.Category
-
- scoreWeight - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- scoreWeight - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- ScottBinCalculation - Class in com.itemanalysis.psychometrics.histogram
-
Scott's method form computing the number of bins in a histogram.
- ScottBinCalculation(double, double, double, double) - Constructor for class com.itemanalysis.psychometrics.histogram.ScottBinCalculation
-
- ScottsBandwidth - Class in com.itemanalysis.psychometrics.kernel
-
See Silverman (1986, p.
- ScottsBandwidth(double[]) - Constructor for class com.itemanalysis.psychometrics.kernel.ScottsBandwidth
-
- ScottsBandwidth(double[], double) - Constructor for class com.itemanalysis.psychometrics.kernel.ScottsBandwidth
-
- sd - Variable in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
-
Standard deviation of values.
- sdX() - Method in class com.itemanalysis.psychometrics.polycor.Covariance
-
- sdY() - Method in class com.itemanalysis.psychometrics.polycor.Covariance
-
- secfac_f77(int, double[], double[], double[][], double[], double[], double, int[], double, int[], boolean[], double[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
-
The secfac_f77 method updates the Hessian by the BFGS factored technique.
- secfac_f77(int, double[], double[], double[][], double[], double[], double, int[], double, int[], boolean[], double[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
-
The secfac_f77 method updates the Hessian by the BFGS factored technique.
- secunf_f77(int, double[], double[], double[][], double[], double[], double[], double, int[], double, int[], boolean[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
-
The secunf_f77 method updates the Hessian by the BFGS unfactored approach.
- secunf_f77(int, double[], double[], double[][], double[], double[], double[], double, int[], double, int[], boolean[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
-
The secunf_f77 method updates the Hessian by the BFGS unfactored approach.
- separationIndex() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScaleQualityStatistics
-
The separation index of scale quality.
- setAllCellPadding(int) - Method in class com.itemanalysis.psychometrics.texttable.TextTable
-
- setCellPadding(int) - Method in class com.itemanalysis.psychometrics.texttable.TextTableRow
-
- setColVariable(VariableAttributes) - Method in class com.itemanalysis.psychometrics.statistics.TwoWayTable
-
- setConstraints(Double, Double) - Method in class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
Constraint the min and max possible values.
- setCovariance(RealMatrix) - Method in interface com.itemanalysis.psychometrics.mixture.ComponentDistribution
-
- setCovariance(RealMatrix) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
-
- setData(double[]) - Method in class com.itemanalysis.psychometrics.histogram.Histogram
-
- setDataType(DataType) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setDataType(DataType) - Method in class com.itemanalysis.psychometrics.data.VariableType
-
- setDensityAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.ContinuousDistributionApproximation
-
- setDensityAt(int, double) - Method in interface com.itemanalysis.psychometrics.distribution.DistributionApproximation
-
- setDensityAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.NormalDistributionApproximation
-
- setDensityAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.UniformDistributionApproximation
-
- setDensityAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.UserSuppliedDistributionApproximation
-
Deprecated.
- setDensityAt(int, double) - Method in class com.itemanalysis.psychometrics.histogram.Histogram
-
- setDensityAt(int, double) - Method in class com.itemanalysis.psychometrics.kernel.KernelDensity
-
- setDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Set difficulty parameter to an existing value.
- setDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Set difficulty parameter to an existing value.
- setDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setDifficulty(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Set difficulty parameter to an existing value.
- setDifficultyPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setDifficultyPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setDifficultyPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setDifficultyPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setDifficultyPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setDifficultyPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setDifficultyPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setDifficultyPrior(ItemParamPrior) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setDifficultyStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Item difficulty standard error may be computed external to the class.
- setDifficultyStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Item difficulty standard error may be computed external to the class.
- setDifficultyStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setDifficultyStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setDifficultyStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setDifficultyStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setDifficultyStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setDifficultyStdError(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Item difficulty standard error may be computed external to the class.
- setDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Set discrimination parameter to an existing value.
- setDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Set discrimination parameter to an existing value.
- setDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setDiscrimination(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Set discrimination parameter to an existing value.
- setDiscriminationPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setDiscriminationPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setDiscriminationPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setDiscriminationPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setDiscriminationPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setDiscriminationPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setDiscriminationPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setDiscriminationPrior(ItemParamPrior) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setDiscriminationStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
The standard error may be computed external to the class.
- setDiscriminationStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
The standard error may be computed external to the class.
- setDiscriminationStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setDiscriminationStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setDiscriminationStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setDiscriminationStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setDiscriminationStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setDiscriminationStdError(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
The standard error may be computed external to the class.
- setDoubleFormat(int, int, TextTableColumnFormat.OutputAlignment) - Method in class com.itemanalysis.psychometrics.texttable.TextTableColumnFormat
-
- setEmOptions(int, double, int) - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
-
- setEmOptions(int, double, int) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- setEPS(double) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.Record
-
- setEvaluators(int, Evaluator[]) - Method in interface com.itemanalysis.psychometrics.optimization.HasEvaluators
-
- setEvaluators(int, Evaluator[]) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- setEvaluators(int, int, Evaluator[]) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- setFixed(boolean) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
If parameters can be estimated, the isFixed should be false.
- setFixed(boolean) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
If parameters can be estimated, the isFixed should be false.
- setFixed(boolean) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
A fixed item will use its initial values as the item parameters and no further estimation or update will be
applied to the item parameters.
- setFrequency(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
- setGroupId(String) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- setGroupId(String) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- setGroupId(String) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
An item may be assigned to a group of items.
- setGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Set lower asymptote parameter to an existing value.
- setGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Set lower asymptote parameter to an existing value.
- setGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setGuessing(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Set lower asymptote parameter to an existing value.
- setGuessingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setGuessingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setGuessingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setGuessingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setGuessingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setGuessingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setGuessingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setGuessingPrior(ItemParamPrior) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setGuessingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
The guessing parameter standard error may be computed external to the class.
- setGuessingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
The guessing parameter standard error may be computed external to the class.
- setGuessingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setGuessingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setGuessingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setGuessingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setGuessingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setGuessingStdError(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
The guessing parameter standard error may be computed external to the class.
- setHaebaraCritionType(EquatingCriterionType) - Method in class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
-
- setHighDiscrimination(double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
-
- setHighPvalue(double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
-
- setHistory(List<double[]>, List<double[]>) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.QNInfo
-
- setHistory(List<double[]>, List<double[]>) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- setId(String) - Method in class com.itemanalysis.psychometrics.statistics.RobustZ
-
- setIndex(int) - Method in class com.itemanalysis.psychometrics.data.VariableName
-
- setIntercept(double) - Method in class com.itemanalysis.psychometrics.irt.equating.HaebaraMethod
-
- setIntercept(double) - Method in class com.itemanalysis.psychometrics.irt.equating.StockingLordMethod
-
- setIntercept(double) - Method in class com.itemanalysis.psychometrics.scaling.DefaultLinearTransformation
-
- setIntFormat(int, TextTableColumnFormat.OutputAlignment) - Method in class com.itemanalysis.psychometrics.texttable.TextTableColumnFormat
-
- setItemFitStatistic(ItemFitStatistic) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- setItemFitStatistic(ItemFitStatistic) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- setItemFitStatistic(ItemFitStatistic) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setItemGroup(String) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setItemScoring(ItemScoring) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setItemScoring(ItemScoring) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- setItemScoring(ItemScoring) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- setItemScoring(ItemScoring) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setItemType(ItemType) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setItemType(ItemType) - Method in class com.itemanalysis.psychometrics.data.VariableType
-
- setItemType(String) - Method in class com.itemanalysis.psychometrics.data.VariableType
-
- setLabel(String) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setLength(int) - Method in class com.itemanalysis.psychometrics.data.VariableLabel
-
- setLowDiscrimination(double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
-
- setLowPvalue(double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
-
- setM(int) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- setMatrix(double[]) - Method in class com.itemanalysis.psychometrics.measurement.DiagonalMatrix
-
Changes the diagonal of the matrix to the values in x.
- setMatrix() - Method in class com.itemanalysis.psychometrics.statistics.IdentityMatrix
-
- setMatrix() - Method in class com.itemanalysis.psychometrics.statistics.IdentityVector
-
- setMean(RealMatrix) - Method in interface com.itemanalysis.psychometrics.mixture.ComponentDistribution
-
- setMean(RealMatrix) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
-
- setMissingDataCode(Object) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- setMissingDataScore(double) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- setMixingProportion(double) - Method in interface com.itemanalysis.psychometrics.mixture.ComponentDistribution
-
- setMixingProportion(double) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
-
- setModel(ItemResponseModel, DistributionApproximation, EstepItemEstimates, double[]) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihood
-
- setModel(ItemResponseModel, DistributionApproximation, EstepItemEstimates, double[]) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihoodFunction
-
- setModel() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemPolytomous
-
- setModelConstraints(boolean, boolean, boolean, boolean) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- setName(VariableName) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setName(VariableName) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- setName(VariableName) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- setName(VariableName) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setName(VariableName) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Sets the name of the item.
- setNameAt(int, VariableName) - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
-
- setNameAt(int, String) - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
-
- setNames(ArrayList<VariableName>, ArrayList<VariableName>) - Method in class com.itemanalysis.psychometrics.irt.equating.RobustZEquatingTest
-
- setNormalPointsAndWeights(double, double) - Method in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
-
- setNotReachedCode(Object) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- setNotReachedScore(double) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- setOldOptions() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- setOmittedCode(Object) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- setOmittedScore(double) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- setPointAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.ContinuousDistributionApproximation
-
- setPointAt(int, double) - Method in interface com.itemanalysis.psychometrics.distribution.DistributionApproximation
-
- setPointAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.NormalDistributionApproximation
-
- setPointAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.UniformDistributionApproximation
-
- setPointAt(int, double) - Method in class com.itemanalysis.psychometrics.distribution.UserSuppliedDistributionApproximation
-
Deprecated.
- setPointAt(int, double) - Method in class com.itemanalysis.psychometrics.histogram.Histogram
-
- setPointAt(int, double) - Method in class com.itemanalysis.psychometrics.kernel.KernelDensity
-
- setPositionInArray(int) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
Stores the item's position in the array of item response models.
- setPosteriorProbability(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
- setPrecision(int) - Method in class com.itemanalysis.psychometrics.irt.equating.HaebaraMethod
-
- setPrecision(int) - Method in class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
-
- setPrecision(int) - Method in class com.itemanalysis.psychometrics.irt.equating.MeanMeanMethod
-
- setPrecision(int) - Method in class com.itemanalysis.psychometrics.irt.equating.MeanSigmaMethod
-
- setPrecision(int) - Method in class com.itemanalysis.psychometrics.irt.equating.StockingLordMethod
-
- setProposalDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
A proposal difficulty value is obtained during each iteration of the estimation routine.
- setProposalDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
A proposal difficulty value is obtained during each iteration of the estimation routine.
- setProposalDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setProposalDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setProposalDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setProposalDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setProposalDifficulty(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setProposalDifficulty(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
A proposal difficulty value is obtained during each iteration of the estimation routine.
- setProposalDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Set the proposed discrimination estimate.
- setProposalDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Set the proposed discrimination estimate.
- setProposalDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setProposalDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setProposalDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setProposalDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setProposalDiscrimination(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setProposalDiscrimination(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Set the proposed discrimination estimate.
- setProposalGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
A proposal guessing parameter value is obtained during each iteration of the estimation routine.
- setProposalGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
A proposal guessing parameter value is obtained during each iteration of the estimation routine.
- setProposalGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setProposalGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setProposalGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setProposalGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setProposalGuessing(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setProposalGuessing(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
A proposal guessing parameter value is obtained during each iteration of the estimation routine.
- setProposalSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setProposalSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
A proposal slipping parameter value is obtained during each iteration of the estimation routine.
- setProposalSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setProposalSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setProposalSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setProposalSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setProposalSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setProposalSlipping(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
A proposal slipping parameter value is obtained during each iteration of the estimation routine.
- setProposalStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setProposalStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setProposalStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setProposalStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setProposalStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setProposalStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setProposalStepParameters() - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setProposalStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setProposalStepParameters(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setProposalThresholds(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Sets the proposed threshold parameters estimates to particular values.
- setProposalThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
-
Sets the array of proposal values.
- setResponseVector(ItemResponseVector) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
If the response vector was not set in teh constructor, this method must be called
prior to estimating ability.
- setResponseVector(byte[]) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- setResponseVector(byte[]) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
Use this method to add an entire item response vector for a single examinee.
- setRobustOptions() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- setRowVariable(VariableAttributes) - Method in class com.itemanalysis.psychometrics.statistics.TwoWayTable
-
- setScale(double) - Method in class com.itemanalysis.psychometrics.irt.equating.HaebaraMethod
-
- setScale(double) - Method in class com.itemanalysis.psychometrics.irt.equating.StockingLordMethod
-
- setScale(double) - Method in class com.itemanalysis.psychometrics.scaling.DefaultLinearTransformation
-
- setScaleAndIntercept(double, double, double, double) - Method in class com.itemanalysis.psychometrics.scaling.DefaultLinearTransformation
-
- setScoreAt(String, double) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- setScoreAt(int, double) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- setScoreAt(double, double) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- setScoreAt(String, double) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Sets the value of a response to that given by score.
- setScoreAt(int, double) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Sets the value of a response to that given by score.
- setScoreAt(double, double) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Sets the value of a response to that given by score.
- setScoreAt(String, double) - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
- setScoreWeights(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- setScoreWeights(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- setScoreWeights(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setScoreWeights(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
A polytomous item is scored with two or more ordinal categories such as 0, 1, 2, 3 or 1, 2, 3, 4, 5.
- setSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Set upper asymptote parameter to an existing value.
- setSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setSlipping(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setSlipping(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Set upper asymptote parameter to an existing value.
- setSlippingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setSlippingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setSlippingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setSlippingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setSlippingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setSlippingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setSlippingPrior(ItemParamPrior) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setSlippingPrior(ItemParamPrior) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setSlippingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setSlippingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
The guessing parameter standard error may be computed external to the class.
- setSlippingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setSlippingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setSlippingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setSlippingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setSlippingStdError(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setSlippingStdError(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
The slipping parameter standard error may be computed external to the class.
- setSpecialDataCodes(SpecialDataCodes) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setSpecialDataCodes(SpecialDataCodes) - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
-
- setStandardErrors(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setStandardErrors(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setStandardErrors(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setStandardErrors(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setStandardErrors(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setStandardErrors(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setStandardErrors(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setStandardErrors(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setStandardized(boolean) - Method in class com.itemanalysis.psychometrics.irt.equating.HaebaraMethod
-
Flag to standardize criterion function.
- setStandardized(boolean) - Method in class com.itemanalysis.psychometrics.irt.equating.StockingLordMethod
-
Flag to standardize criterion function.
- setStartValue(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- setStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setStepParameters() - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setStepParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setStepParameters(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setStepPriorAt(ItemParamPrior, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setStepPriorAt(ItemParamPrior, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setStepPriorAt(ItemParamPrior, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setStepPriorAt(ItemParamPrior, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setStepPriorAt(ItemParamPrior, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setStepPriorAt(ItemParamPrior, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setStepPriorAt(ItemParamPrior, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setStepPriorAt(ItemParamPrior, int) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
- setStepStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setStepStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setStepStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setStepStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setStepStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setStepStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setStepStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setStepStdError(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Sets the standard error for the step parameter estimates.
- setStockingLordCritionType(EquatingCriterionType) - Method in class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
-
- setStringFormat(int, TextTableColumnFormat.OutputAlignment) - Method in class com.itemanalysis.psychometrics.texttable.TextTableColumnFormat
-
- setTerminateOnEvalImprovementNumOfEpoch(int) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- setTestItemOrder(int) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setThresholdParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setThresholdParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setThresholdParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setThresholdParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setThresholdParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setThresholdParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setThresholdParameters(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setThresholdParameters(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Sets the threshold parameters to particular values.
- setThresholds(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
-
Sets the array of threshold estimates.
- setThresholdStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- setThresholdStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- setThresholdStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- setThresholdStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- setThresholdStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- setThresholdStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- setThresholdStdError(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- setThresholdStdError(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Set the threshold standard errors.
- setTOL(double) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.Record
-
- setToLogDeterministic(float[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- setToLogDeterministic(double[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- setUniformPointsAndWeights() - Method in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
-
- setValue(double) - Method in class com.itemanalysis.psychometrics.kernel.UserSuppliedBandwidth
-
- setVarcharSize(int) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- setVariableNameAt(int, VariableName) - Method in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
-
- setVariableNameAt(int, String) - Method in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
-
- setVariableNameAt(int, VariableName) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
-
- setVariableNameAt(int, String) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
-
- setVariableNameAt(int, VariableName) - Method in interface com.itemanalysis.psychometrics.factoranalysis.FactorMethod
-
- setVerbose(boolean) - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
-
- showDetails(boolean) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
-
Show detailed information about teh optimizer.
- showDetails(boolean) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
-
Show detailed information about teh optimizer.
- shuffle(int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- shuffle(int[], Random) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- shutUp() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.Record
-
- shutUp() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- sigLevelByApproxRand(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Computes the significance level by approximate randomization, using a
default value of 1000 iterations.
- sigLevelByApproxRand(double[], double[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Takes a pair of arrays, A and B, which represent corresponding
outcomes of a pair of random variables: say, results for two different
classifiers on a sequence of inputs.
- sigLevelByApproxRand(int[], int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sigLevelByApproxRand(int[], int[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sigLevelByApproxRand(boolean[], boolean[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sigLevelByApproxRand(boolean[], boolean[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sigmoid(double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Compute the sigmoid function with mean zero.
- sign_f77(double, double) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
-
This method implements the FORTRAN sign (not sin) function.
- significant(double) - Method in class com.itemanalysis.psychometrics.statistics.RobustZ
-
- SijAt(int) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
Sij is the frequency of responses in this score category or a higher category.
- SimpleBinCalculation - Class in com.itemanalysis.psychometrics.histogram
-
- SimpleBinCalculation(int, double, double) - Constructor for class com.itemanalysis.psychometrics.histogram.SimpleBinCalculation
-
- SimplePluginBandwidth - Class in com.itemanalysis.psychometrics.kernel
-
See Silverman (1986, p.
- SimplePluginBandwidth(StandardDeviation) - Constructor for class com.itemanalysis.psychometrics.kernel.SimplePluginBandwidth
-
- SimplePluginBandwidth(StandardDeviation, double) - Constructor for class com.itemanalysis.psychometrics.kernel.SimplePluginBandwidth
-
- Sip() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
Returns the raw item score.
- size() - Method in class com.itemanalysis.psychometrics.cmh.CmhTableRow
-
- size() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.QNInfo
-
- SloppyMath - Class in com.itemanalysis.psychometrics.optimization
-
The class SloppyMath contains methods for performing basic
numeric operations.
- smdConfidenceInterval(double) - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
-
Computes 95% confidence interval for the standardized mean difference.
- smdDifClass() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
-
- sndofd_f77(int, double[], Uncmin_methods, double[], double[][], double[], double, double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
-
The sndofd_f77 method finds second order forward finite difference
approximations to the Hessian.
- sndofd_f77(int, double[], Uncmin_methods, double[], double[][], double[], double, double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
-
The sndofd_f77 method finds second order forward finite difference
approximations to the Hessian.
- softmax(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- SpecialDataCodes - Class in com.itemanalysis.psychometrics.data
-
- SpecialDataCodes() - Constructor for class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- SpecialDataCodes(String) - Constructor for class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
Creates an object using the variable name and code string.
- SpjAt(int) - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
-
Spj is the sum of Sij over all categories.
- spuriousCorrectedPearsonCorrelation() - Method in class com.itemanalysis.psychometrics.polycor.PolyserialPlugin
-
Correct pearson correlation for spuriousness due to including the studied
item score Y in the computation of X values.
- spuriousCorrectedValue() - Method in class com.itemanalysis.psychometrics.polycor.PolyserialPlugin
-
Correct polyserial correlation for spuriousness due to including the studied
item score Y in the computation of X values.
- SQRT_EPSILON - Static variable in class com.itemanalysis.psychometrics.measurement.MachineAccuracy
-
- SQRT_SQRT_EPSILON - Static variable in class com.itemanalysis.psychometrics.measurement.MachineAccuracy
-
- squaredIntegral() - Method in class com.itemanalysis.psychometrics.kernel.LeastSquaresCrossValidation
-
- standardDeviation() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- standardDeviation() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- standardError(double[]) - Method in class com.itemanalysis.psychometrics.statistics.Bootstrap
-
- standardErrorOfMean(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- StandardErrorOfMeasurement - Class in com.itemanalysis.psychometrics.reliability
-
- StandardErrorOfMeasurement() - Constructor for class com.itemanalysis.psychometrics.reliability.StandardErrorOfMeasurement
-
- standardize(boolean) - Method in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
-
Uses current quadrature points and weights to compute the mean and standard deviation of the
density, and then standardizes the distribution to have a mean of zero and a standard deviation of one.
- standardize(boolean) - Method in interface com.itemanalysis.psychometrics.distribution.DistributionApproximation
-
- standardize(boolean) - Method in class com.itemanalysis.psychometrics.histogram.Histogram
-
Uses current quadrature points and weights to compute the mean and standard deviation of the
density, and tehn standardizes the distribution to have a mean of zero and a standard deviation of one.
- standardize(boolean) - Method in class com.itemanalysis.psychometrics.kernel.KernelDensity
-
Uses current quadrature points and weights to compute the mean and standard deviation of the
density, and tehn standardizes the distribution to have a mean of zero and a standard deviation of one.
- standardize(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Standardize values in this array, i.e., subtract the mean and divide by the standard deviation.
- standardizedHaebara(boolean) - Method in class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
-
- standardizedStockingLord(boolean) - Method in class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
-
- start(double, double[]) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.Record
-
- start(double, double[], double[]) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.Record
-
- StartingValues - Class in com.itemanalysis.psychometrics.irt.estimation
-
Computes starting values for binary item response models.
- StartingValues(ItemResponseVector[], ItemResponseModel[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.StartingValues
-
Default constructor takes an array of item response vectors and an array of item response models.
- stdError(double[], double[][]) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihood
-
Computes the standard errors of the item parameter estimates.
- stdError(ItemResponseModel) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihood
-
- stdev(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- step - Variable in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
-
- step - Variable in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- stepPrior - Variable in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- stepStdError - Variable in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- StochasticCalculateMethods - Enum in com.itemanalysis.psychometrics.optimization
-
This enumeratin was created to organize the selection of different methods for stochastic
calculations.
- StockingLordMethod - Class in com.itemanalysis.psychometrics.irt.equating
-
- StockingLordMethod(LinkedHashMap<String, ItemResponseModel>, LinkedHashMap<String, ItemResponseModel>, DistributionApproximation, DistributionApproximation, EquatingCriterionType) - Constructor for class com.itemanalysis.psychometrics.irt.equating.StockingLordMethod
-
- StopWatch - Class in com.itemanalysis.psychometrics.tools
-
The StopWatch class provide date and time functions
including an elapsed time function that provides
calculations to the milisecond.
- StopWatch() - Constructor for class com.itemanalysis.psychometrics.tools.StopWatch
-
- StorelessDescriptiveStatistics - Class in com.itemanalysis.psychometrics.statistics
-
- StorelessDescriptiveStatistics() - Constructor for class com.itemanalysis.psychometrics.statistics.StorelessDescriptiveStatistics
-
- stringIterator() - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- stringIterator() - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
- stringIterator() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
- stringResponseMap - Variable in class com.itemanalysis.psychometrics.measurement.AbstractItemResponseSummary
-
- stringScoreMap - Variable in class com.itemanalysis.psychometrics.measurement.AbstractItemResponseSummary
-
- SturgesBinCalculation - Class in com.itemanalysis.psychometrics.histogram
-
Sturges' method for computing the number of bins.
- SturgesBinCalculation(double, double, double) - Constructor for class com.itemanalysis.psychometrics.histogram.SturgesBinCalculation
-
- subArray(int[], int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sum(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the sum of an array of numbers.
- sum(double[], int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the sum of the portion of an array of numbers between
fromIndex, inclusive, and toIndex, exclusive.
- sum(int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sum(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sum(int[][]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- summarize(double[], int[]) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolyserialCorrelation
-
- summarize() - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolyserialCorrelation
-
- summarize() - Method in class com.itemanalysis.psychometrics.polycor.PolyserialLogLikelihoodTwoStep
-
- summarizeData(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
Summarizes data into frequency counts.
- sumMatrix(RealMatrix) - Static method in class com.itemanalysis.psychometrics.factoranalysis.MatrixUtils
-
- sumOfScores() - Method in class com.itemanalysis.psychometrics.cmh.CmhTable
-
Computes the marginal sum of scores.
- sumOfScores() - Method in class com.itemanalysis.psychometrics.cmh.CmhTableRow
-
Computes the sum of scores for those values in columns.
- sumOfSquaredScores() - Method in class com.itemanalysis.psychometrics.cmh.CmhTable
-
Computes the marginal sum of squared scores.
- sumScore - Variable in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
Sum of the response vector, excluding missing responses.
- sumsOfSquares - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
-
- sumSquared(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- sumSquaredError(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- suppressTestPrompt(boolean) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- SurpriseConvergence(String) - Constructor for class com.itemanalysis.psychometrics.optimization.QNMinimizer.SurpriseConvergence
-