public class IrmPCM extends AbstractItemResponseModel
groupId, isFixed, maxCategory, maxWeight, minCategory, minWeight, name, ncat, ncatM1, scoreWeight| Constructor and Description |
|---|
IrmPCM(double difficulty,
double[] threshold,
double D)
Default constructor
|
| Modifier and Type | Method and Description |
|---|---|
double |
acceptAllProposalValues()
Proposal values for every item parameter are obtained at each iteration of the estimation routine.
|
double |
addPriorsToLogLikelihood(double ll,
double[] iparam)
Adds prior probabilities to the loglikelihood.
|
double[] |
addPriorsToLogLikelihoodGradient(double[] loglikegrad,
double[] iparam)
Adds log-prior probabilities to the item loglikelihood.
|
double |
cumulativeProbability(double theta,
int category)
Not implemented.
|
double |
derivTheta(double theta)
Partial derivative with respect to theta.
|
double |
expectedValue(double theta)
computes the expected value using parameters stored in the object
|
double |
getDifficulty()
Gets the item difficulty parameter.
|
double |
getDifficultyStdError()
Gets the item difficulty standard error.
|
double |
getDiscrimination()
Gets item discrimination.
|
double |
getDiscriminationStdError()
Gets the standard error for the item discrimination estimate.
|
double |
getGuessing()
Gets the pseudo-guessing (i.e.
|
double |
getGuessingStdError()
Gets the guessing parameter estimate standard error.
|
double[] |
getItemParameterArray() |
int |
getNumberOfEstimatedParameters()
Number of estimated parameters does not count any values fixed during estimation.
|
int |
getNumberOfParameters()
Gets the number of item parameters in the response model.
|
double |
getProposalDifficulty()
A proposal difficulty value is obtained during each iteration of the estimation routine.
|
double |
getProposalDiscrimination() |
double[] |
getProposalThresholds() |
double |
getScalingConstant() |
double |
getSlipping()
Gets the slipping (i.e.
|
double |
getSlippingStdError()
Gets the slipping parameter estimate standard error.
|
double[] |
getStepParameters()
Polytomous item response models may have step parameters.
|
double[] |
getStepStdError()
Gets that standard errors for each step parameter estimate.
|
double[] |
getThresholdParameters()
Polytomous item response models may use an overall item difficulty parameter and two or more threshold
parameters.
|
double[] |
getThresholdStdError()
Gets the array of standard errors fort eh threshold parameter estimates.
|
IrmType |
getType()
Gets the type of item response model.
|
double[] |
gradient(double theta,
double[] iparam,
int k,
double D)
Computes the gradientAt (vector of first partial derivatives) with respect to the item parameters.
|
double[] |
gradient(double theta,
int k)
Computes the gradientAt of teh item response model with respect to the item parameters
|
void |
incrementMeanMean(org.apache.commons.math3.stat.descriptive.moment.Mean meanDiscrimination,
org.apache.commons.math3.stat.descriptive.moment.Mean meanDifficulty)
Mean/mean linking coefficients are computed from teh mean item difficulty and mean item discrimination.
|
void |
incrementMeanSigma(org.apache.commons.math3.stat.descriptive.moment.Mean mean,
org.apache.commons.math3.stat.descriptive.moment.StandardDeviation sd)
Mean/sigma linking coefficients are computed from teh mean and standard deviation of item difficulty.
|
double |
itemInformationAt(double theta)
Computes the item information function at theta.
|
double[] |
nonZeroPrior(double[] param)
If the prior density for a parameter is zero, adjust parameter to the nearest non zero value.
|
double |
probability(double theta,
double[] iparam,
int category,
double D)
Computes the probability of a response using item parameter values passed in iparam.
|
double |
probability(double theta,
int category)
Computes probability of a response using parameters stored in the object.
|
void |
scale(double intercept,
double slope)
Performs a linear transformation of item parameters and standard errors.
|
void |
setDifficulty(double difficulty)
Set difficulty parameter to an existing value.
|
void |
setDifficultyPrior(ItemParamPrior difficultyPrior) |
void |
setDifficultyStdError(double stdError)
Item difficulty standard error may be computed external to the class.
|
void |
setDiscrimination(double discrimination)
Set discrimination parameter to an existing value.
|
void |
setDiscriminationPrior(ItemParamPrior prior) |
void |
setDiscriminationStdError(double stdError)
The standard error may be computed external to the class.
|
void |
setGuessing(double guessing)
Set lower asymptote parameter to an existing value.
|
void |
setGuessingPrior(ItemParamPrior guessingPrior) |
void |
setGuessingStdError(double StdError)
The guessing parameter standard error may be computed external to the class.
|
void |
setName(VariableName name)
Sets the name of the item.
|
void |
setProposalDifficulty(double difficulty)
A proposal difficulty value is obtained during each iteration of the estimation routine.
|
void |
setProposalDiscrimination(double discrimination)
Set the proposed discrimination estimate.
|
void |
setProposalGuessing(double guessing)
A proposal guessing parameter value is obtained during each iteration of the estimation routine.
|
void |
setProposalSlipping(double slipping)
A proposal slipping parameter value is obtained during each iteration of the estimation routine.
|
void |
setProposalStepParameters() |
void |
setProposalStepParameters(double[] step) |
void |
setProposalThresholds(double[] thresholds)
Sets the proposed threshold parameters estimates to particular values.
|
void |
setSlipping(double slipping)
Set upper asymptote parameter to an existing value.
|
void |
setSlippingPrior(ItemParamPrior slippingPrior) |
void |
setSlippingStdError(double slipping)
The slipping parameter standard error may be computed external to the class.
|
void |
setStandardErrors(double[] x) |
void |
setStepParameters() |
void |
setStepParameters(double[] step) |
void |
setStepPriorAt(ItemParamPrior prior,
int k) |
void |
setStepStdError(double[] stdError)
Sets the standard error for the step parameter estimates.
|
void |
setThresholdParameters(double[] thresholds)
Sets the threshold parameters to particular values.
|
void |
setThresholdStdError(double[] stdError)
Set the threshold standard errors.
|
java.lang.String |
toString() |
double |
tSharpExpectedValue(double theta,
double intercept,
double slope)
Computes probability of a response under a linear transformation.
|
double |
tSharpProbability(double theta,
int response,
double intercept,
double slope)
Computes probability of a response under a linear transformation.
|
double |
tStarExpectedValue(double theta,
double intercept,
double slope)
computes the expected value using parameters stored in the object
|
double |
tStarProbability(double theta,
int response,
double intercept,
double slope)
Returns the probability of a response with a linear transformatin of the parameters.
|
defaultScoreWeights, getGroupId, getItemFitStatistic, getItemScoring, getMaxScoreWeight, getMinScoreWeight, getName, getNcat, getScoreWeights, isFixed, setFixed, setGroupId, setItemFitStatistic, setItemScoring, setScoreWeightspublic IrmPCM(double difficulty,
double[] threshold,
double D)
difficulty - item difficulty parameterthreshold - an array of m-1 threshold parameters for an m category itemD - a scaling constant that is either 1.0, 1.7, or 1.712public void setName(VariableName name)
ItemResponseModelsetName in interface ItemResponseModelsetName in class AbstractItemResponseModelname - an item namepublic double probability(double theta,
double[] iparam,
int category,
double D)
ItemResponseModeltheta - person ability parameter.iparam - array of item parameters. The order is important and will be unique to each implementation of the interface.category - an item response category.D - a sclaing constant that is either 1 or 1.7.public double probability(double theta,
int category)
theta - person proficiency valuecategory - category for which the probability of a response is sought.public double expectedValue(double theta)
theta - public double cumulativeProbability(double theta,
int category)
theta - a person ability valuecategory - response categorypublic double[] gradient(double theta,
double[] iparam,
int k,
double D)
ItemResponseModeltheta - person ability estimate.iparam - array of item parameters.k - response categoryD - scaling constant that is either 1 or 1.7public double[] gradient(double theta,
int k)
theta - person ability valuepublic double addPriorsToLogLikelihood(double ll,
double[] iparam)
ItemResponseModelpublic double[] addPriorsToLogLikelihoodGradient(double[] loglikegrad,
double[] iparam)
ItemResponseModelMarginalMaximumLikelihoodEstimation.public double derivTheta(double theta)
theta - person proficiency valuepublic double itemInformationAt(double theta)
ItemResponseModeltheta - person ability value.public void incrementMeanSigma(org.apache.commons.math3.stat.descriptive.moment.Mean mean,
org.apache.commons.math3.stat.descriptive.moment.StandardDeviation sd)
ItemResponseModelmean - item difficulty mean.sd - item difficulty standard deviation.public void incrementMeanMean(org.apache.commons.math3.stat.descriptive.moment.Mean meanDiscrimination,
org.apache.commons.math3.stat.descriptive.moment.Mean meanDifficulty)
ItemResponseModelmeanDiscrimination - item discrimination mean.meanDifficulty - item difficulty mean.public void scale(double intercept,
double slope)
ItemResponseModelintercept - intercept transformation coefficient.slope - slope transformation coefficient.public int getNumberOfParameters()
ItemResponseModelpublic int getNumberOfEstimatedParameters()
ItemResponseModelpublic double getScalingConstant()
public double tStarProbability(double theta,
int response,
double intercept,
double slope)
theta - examinee proficiency parameterresponse - item responseintercept - intercept coefficient of linear transformationslope - slope (i.e. scale) parameter of the linear transformationpublic double tStarExpectedValue(double theta,
double intercept,
double slope)
theta - intercept - intercept linking coefficient.slope - slope linking coefficient.public double tSharpProbability(double theta,
int response,
double intercept,
double slope)
ItemResponseModelStockingLordMethod).
It applies the linear transformation such that the Old form is transformed to the New Form.theta - examinee proficiency valueresponse - target categoryintercept - linking coefficient for interceptslope - linking coefficient for slopepublic double tSharpExpectedValue(double theta,
double intercept,
double slope)
ItemResponseModelStockingLordMethod).
It applies the linear transformation such that the Old form is transformed to the New Form.theta - examinee proficiency valueintercept - linking coefficient for interceptslope - linking coefficient for slopepublic java.lang.String toString()
toString in class java.lang.Objectpublic IrmType getType()
ItemResponseModelpublic double[] getItemParameterArray()
public void setStandardErrors(double[] x)
public double[] nonZeroPrior(double[] param)
ItemResponseModelpublic void setDiscriminationPrior(ItemParamPrior prior)
public void setStepPriorAt(ItemParamPrior prior, int k)
public void setDifficultyPrior(ItemParamPrior difficultyPrior)
public void setGuessingPrior(ItemParamPrior guessingPrior)
public void setSlippingPrior(ItemParamPrior slippingPrior)
public double getDifficulty()
ItemResponseModelpublic void setDifficulty(double difficulty)
ItemResponseModelItemResponseModel.setProposalDifficulty(double).public double getProposalDifficulty()
ItemResponseModelpublic void setProposalDifficulty(double difficulty)
ItemResponseModeldifficulty - proposed item difficulty value.public double getDifficultyStdError()
ItemResponseModelpublic void setDifficultyStdError(double stdError)
ItemResponseModelstdError - item difficulty standard error.public double getDiscrimination()
ItemResponseModelpublic void setDiscrimination(double discrimination)
ItemResponseModelItemResponseModel.setProposalDiscrimination(double).public double getProposalDiscrimination()
public void setProposalDiscrimination(double discrimination)
ItemResponseModeldiscrimination - proposed item discrimination value.public double getDiscriminationStdError()
ItemResponseModelpublic void setDiscriminationStdError(double stdError)
ItemResponseModelstdError - item discrimination standard error.public double getGuessing()
ItemResponseModelpublic void setGuessing(double guessing)
ItemResponseModelItemResponseModel.setProposalGuessing(double).public void setProposalGuessing(double guessing)
ItemResponseModelguessing - proposed guessing parameter estimate.public double getGuessingStdError()
ItemResponseModelpublic void setGuessingStdError(double StdError)
ItemResponseModelStdError - standard error for the guessing parameter estimate.public void setSlipping(double slipping)
ItemResponseModelItemResponseModel.setProposalSlipping(double).public void setProposalSlipping(double slipping)
ItemResponseModelslipping - proposed slipping parameter estimate.public void setSlippingStdError(double slipping)
ItemResponseModelslipping - standard error for the slipping parameter estimate.public double getSlipping()
ItemResponseModelpublic double getSlippingStdError()
ItemResponseModelpublic double[] getThresholdParameters()
ItemResponseModelpublic void setThresholdParameters(double[] thresholds)
ItemResponseModelItemResponseModel.setFixed(boolean).thresholds - array of threshold parameters.public double[] getProposalThresholds()
public void setProposalThresholds(double[] thresholds)
ItemResponseModelItemResponseModel.setFixed(boolean).thresholds - array of proposed threshold parameter estimates.public double[] getThresholdStdError()
ItemResponseModelpublic void setThresholdStdError(double[] stdError)
ItemResponseModelstdError - an array of standard errors for the threshold paramter estimates.public void setStepParameters(double[] step)
public void setProposalStepParameters(double[] step)
public double[] getStepParameters()
ItemResponseModelpublic void setStepParameters()
public void setProposalStepParameters()
public double[] getStepStdError()
ItemResponseModelpublic void setStepStdError(double[] stdError)
ItemResponseModelstdError - an array of standard errors for the step parameters.public double acceptAllProposalValues()
ItemResponseModel