public class StockingLordMethod extends AbstractMultivariateFunction implements LinearTransformation, Uncmin_methods, org.apache.commons.math3.analysis.UnivariateFunction
| Constructor and Description |
|---|
StockingLordMethod(java.util.LinkedHashMap<java.lang.String,ItemResponseModel> itemFormX,
java.util.LinkedHashMap<java.lang.String,ItemResponseModel> itemFormY,
DistributionApproximation xDistribution,
DistributionApproximation yDistribution,
EquatingCriterionType criterion) |
| Modifier and Type | Method and Description |
|---|---|
double |
f_to_minimize(double[] x) |
double |
getF1(double[] coefficient)
Criterion function F1 as described in Kim and Kolen (2007).
|
double |
getF2(double[] coefficient)
Criterion function F2 as described in Kim and Kolen (2007).
|
double |
getFormXTccAtTheta(double theta) |
double |
getFormYTccAtTheta(double theta) |
double |
getIntercept() |
org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunction |
getObjectiveFunction() |
org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunctionGradient |
getObjectiveFunctionGradient() |
double |
getScale() |
double |
getTSharpAtTheta(double[] coefficient,
double theta) |
double |
getTStarAtTheta(double[] coefficient,
double theta) |
void |
gradient(double[] x,
double[] g) |
void |
hessian(double[] x,
double[][] h) |
void |
setIntercept(double intercept) |
void |
setPrecision(int precision) |
void |
setScale(double scale) |
void |
setStandardized(boolean standardized)
Flag to standardize criterion function.
|
double |
transform(double x) |
double |
value(double x)
Method needed for Brent optimizer when minimizing teh objective function for the Rasch family of models.
|
double |
value(double[] coefficient)
Function to be minimized by optimization class
Uncmin index starts at 1
argument[1]=B (intercept) equating constant
argument[2]=A (slope) equating constant
|
gradient, gradientAt, hessianAt, machineEpsilon, partialDerivativepublic StockingLordMethod(java.util.LinkedHashMap<java.lang.String,ItemResponseModel> itemFormX, java.util.LinkedHashMap<java.lang.String,ItemResponseModel> itemFormY, DistributionApproximation xDistribution, DistributionApproximation yDistribution, EquatingCriterionType criterion) throws org.apache.commons.math3.exception.DimensionMismatchException
org.apache.commons.math3.exception.DimensionMismatchExceptionpublic void setStandardized(boolean standardized)
standardized - if true the criterion function is standardized. If not, it is not standardized.public double value(double[] coefficient)
value in interface org.apache.commons.math3.analysis.MultivariateFunctionpublic double value(double x)
value in interface org.apache.commons.math3.analysis.UnivariateFunctionx - interceptpublic org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunction getObjectiveFunction()
public org.apache.commons.math3.optim.nonlinear.scalar.ObjectiveFunctionGradient getObjectiveFunctionGradient()
public double getF1(double[] coefficient)
coefficient - arguments in optimizationpublic double getF2(double[] coefficient)
coefficient - arguments in optimizationpublic double getFormYTccAtTheta(double theta)
public double getFormXTccAtTheta(double theta)
public double getTStarAtTheta(double[] coefficient,
double theta)
public double getTSharpAtTheta(double[] coefficient,
double theta)
public void setIntercept(double intercept)
public void setScale(double scale)
public double getIntercept()
getIntercept in interface LinearTransformationpublic double getScale()
getScale in interface LinearTransformationpublic void setPrecision(int precision)
public double transform(double x)
transform in interface LinearTransformationpublic double f_to_minimize(double[] x)
f_to_minimize in interface Uncmin_methodspublic void hessian(double[] x,
double[][] h)
hessian in interface Uncmin_methodspublic void gradient(double[] x,
double[] g)
gradient in interface Uncmin_methods