public interface ItemResponseModel
Modifier and Type | Method and Description |
---|---|
double |
acceptAllProposalValues()
Proposal values for every item parameter are obtained at each iteration of the estimation routine.
|
double |
addPriorsToLogLikelihood(double loglike,
double[] iparam)
Adds prior probabilities to the loglikelihood.
|
double[] |
addPriorsToLogLikelihoodGradient(double[] loglikegrad,
double[] iparam)
Adds log-prior probabilities to the item loglikelihood.
|
double |
cumulativeProbability(double theta,
int category)
Mainly here for the graded response model
|
double |
derivTheta(double theta)
Computes the first derivative with respect to person ability.
|
double |
expectedValue(double theta)
For a binary item,
probability(double, int) and the excpected value returned by this method
are the same thing. |
double |
getDifficulty()
Gets the item difficulty parameter.
|
double |
getDifficultyStdError()
Gets the item difficulty standard error.
|
double |
getDiscrimination()
Gets item discrimination.
|
double |
getDiscriminationStdError()
Gets the standard error for the item discrimination estimate.
|
java.lang.String |
getGroupId()
Gets the item group ID code.
|
double |
getGuessing()
Gets the pseudo-guessing (i.e.
|
double |
getGuessingStdError()
Gets the guessing parameter estimate standard error.
|
ItemFitStatistic |
getItemFitStatistic() |
double[] |
getItemParameterArray() |
ItemScoring |
getItemScoring() |
double |
getMaxScoreWeight()
Gets the largest possible score weight.
|
double |
getMinScoreWeight()
Gets the lowest possible score weight.
|
VariableName |
getName()
Gets the name of the item.
|
int |
getNcat()
Gets the number of response categories.
|
int |
getNumberOfEstimatedParameters()
Number of estimated parameters does not count any values fixed during estimation.
|
int |
getNumberOfParameters()
Gets the number of item parameters in the response model.
|
double |
getProposalDifficulty()
A proposal difficulty value is obtained during each iteration of the estimation routine.
|
double |
getScalingConstant() |
byte[] |
getScoreWeights()
Gets an array fo score weights.
|
double |
getSlipping()
Gets the slipping (i.e.
|
double |
getSlippingStdError()
Gets the slipping parameter estimate standard error.
|
double[] |
getStepParameters()
Polytomous item response models may have step parameters.
|
double[] |
getStepStdError()
Gets that standard errors for each step parameter estimate.
|
double[] |
getThresholdParameters()
Polytomous item response models may use an overall item difficulty parameter and two or more threshold
parameters.
|
double[] |
getThresholdStdError()
Gets the array of standard errors fort eh threshold parameter estimates.
|
IrmType |
getType()
Gets the type of item response model.
|
double[] |
gradient(double theta,
double[] iparam,
int category,
double D)
Computes the gradientAt (vector of first partial derivatives) with respect to the item parameters.
|
double[] |
gradient(double theta,
int category)
Computes the gradientAt at theta.
|
void |
incrementMeanMean(org.apache.commons.math3.stat.descriptive.moment.Mean meanDiscrimination,
org.apache.commons.math3.stat.descriptive.moment.Mean meanDifficulty)
Mean/mean linking coefficients are computed from teh mean item difficulty and mean item discrimination.
|
void |
incrementMeanSigma(org.apache.commons.math3.stat.descriptive.moment.Mean mean,
org.apache.commons.math3.stat.descriptive.moment.StandardDeviation sd)
Mean/sigma linking coefficients are computed from teh mean and standard deviation of item difficulty.
|
boolean |
isFixed()
A fixed item will use its initial values as the item parameters and no further estimation or update will be
applied to the item parameters.
|
double |
itemInformationAt(double theta)
Computes the item information function at theta.
|
double[] |
nonZeroPrior(double[] param)
If the prior density for a parameter is zero, adjust parameter to the nearest non zero value.
|
double |
probability(double theta,
double[] iparam,
int response,
double D)
Computes the probability of a response using item parameter values passed in iparam.
|
double |
probability(double theta,
int response)
Computes the probability of response.
|
void |
scale(double intercept,
double slope)
Performs a linear transformation of item parameters and standard errors.
|
void |
setDifficulty(double difficulty)
Set difficulty parameter to an existing value.
|
void |
setDifficultyPrior(ItemParamPrior prior) |
void |
setDifficultyStdError(double StdError)
Item difficulty standard error may be computed external to the class.
|
void |
setDiscrimination(double discrimination)
Set discrimination parameter to an existing value.
|
void |
setDiscriminationPrior(ItemParamPrior prior) |
void |
setDiscriminationStdError(double StdError)
The standard error may be computed external to the class.
|
void |
setFixed(boolean isFixed)
A fixed item will use its initial values as the item parameters and no further estimation or update will be
applied to the item parameters.
|
void |
setGroupId(java.lang.String groupId)
An item may be assigned to a group of items.
|
void |
setGuessing(double guessing)
Set lower asymptote parameter to an existing value.
|
void |
setGuessingPrior(ItemParamPrior prior) |
void |
setGuessingStdError(double StdError)
The guessing parameter standard error may be computed external to the class.
|
void |
setItemFitStatistic(ItemFitStatistic fitStatistic) |
void |
setItemScoring(ItemScoring itemScoring) |
void |
setName(VariableName name)
Sets the name of the item.
|
void |
setProposalDifficulty(double difficulty)
A proposal difficulty value is obtained during each iteration of the estimation routine.
|
void |
setProposalDiscrimination(double discrimination)
Set the proposed discrimination estimate.
|
void |
setProposalGuessing(double guessing)
A proposal guessing parameter value is obtained during each iteration of the estimation routine.
|
void |
setProposalSlipping(double slipping)
A proposal slipping parameter value is obtained during each iteration of the estimation routine.
|
void |
setProposalStepParameters(double[] step) |
void |
setProposalThresholds(double[] thresholds)
Sets the proposed threshold parameters estimates to particular values.
|
void |
setScoreWeights(double[] scoreWeight)
A polytomous item is scored with two or more ordinal categories such as 0, 1, 2, 3 or 1, 2, 3, 4, 5.
|
void |
setSlipping(double slipping)
Set upper asymptote parameter to an existing value.
|
void |
setSlippingPrior(ItemParamPrior prior) |
void |
setSlippingStdError(double StdError)
The slipping parameter standard error may be computed external to the class.
|
void |
setStandardErrors(double[] x) |
void |
setStepParameters(double[] step) |
void |
setStepPriorAt(ItemParamPrior prior,
int index) |
void |
setStepStdError(double[] stdError)
Sets the standard error for the step parameter estimates.
|
void |
setThresholdParameters(double[] thresholds)
Sets the threshold parameters to particular values.
|
void |
setThresholdStdError(double[] stdError)
Set the threshold standard errors.
|
double |
tSharpExpectedValue(double theta,
double intercept,
double slope)
Computes probability of a response under a linear transformation.
|
double |
tSharpProbability(double theta,
int response,
double intercept,
double slope)
Computes probability of a response under a linear transformation.
|
double |
tStarExpectedValue(double theta,
double intercept,
double slope)
Computes item expected value under a linear transformation.
|
double |
tStarProbability(double theta,
int response,
double intercept,
double slope)
Computes probability of a response under a linear transformation.
|
double probability(double theta, int response)
theta
- a person ability value.response
- an item response (i.e. a person's score on an item).double probability(double theta, double[] iparam, int response, double D)
theta
- person ability parameter.iparam
- array of item parameters. The order is important and will be unique to each implementation of the interface.response
- an item response category.D
- a sclaing constant that is either 1 or 1.7.double expectedValue(double theta)
probability(double, int)
and the excpected value returned by this method
are the same thing. For a polytomous item, the expected value ranges from the minimum possible
item score and the maximum possible item score.theta
- a person ability value.double cumulativeProbability(double theta, int category)
theta
- a person ability valuecategory
- response categoryvoid setDiscriminationPrior(ItemParamPrior prior)
void setDifficultyPrior(ItemParamPrior prior)
void setGuessingPrior(ItemParamPrior prior)
void setSlippingPrior(ItemParamPrior prior)
void setStepPriorAt(ItemParamPrior prior, int index)
void setItemScoring(ItemScoring itemScoring)
double[] nonZeroPrior(double[] param)
ItemScoring getItemScoring()
void scale(double intercept, double slope)
intercept
- intercept transformation coefficient.slope
- slope transformation coefficient.double addPriorsToLogLikelihood(double loglike, double[] iparam)
ll
- loglikelihood valuedouble[] gradient(double theta, int category)
theta
- person ability valuedouble[] gradient(double theta, double[] iparam, int category, double D)
theta
- person ability estimate.iparam
- array of item parameters.category
- response categoryD
- scaling constant that is either 1 or 1.7double[] addPriorsToLogLikelihoodGradient(double[] loglikegrad, double[] iparam)
MarginalMaximumLikelihoodEstimation
.loglikegrad
- int getNumberOfParameters()
int getNumberOfEstimatedParameters()
double[] getItemParameterArray()
void setStandardErrors(double[] x)
int getNcat()
double getScalingConstant()
boolean isFixed()
void setFixed(boolean isFixed)
isFixed
- double getDifficulty()
void setDifficulty(double difficulty)
setProposalDifficulty(double)
.double getProposalDifficulty()
void setProposalDifficulty(double difficulty)
difficulty
- proposed item difficulty value.double getDifficultyStdError()
void setDifficultyStdError(double StdError)
StdError
- item difficulty standard error.double acceptAllProposalValues()
double getDiscrimination()
void setDiscrimination(double discrimination)
setProposalDiscrimination(double)
.void setProposalDiscrimination(double discrimination)
discrimination
- proposed item discrimination value.double getDiscriminationStdError()
void setDiscriminationStdError(double StdError)
StdError
- item discrimination standard error.double getGuessing()
void setGuessing(double guessing)
setProposalGuessing(double)
.void setProposalGuessing(double guessing)
guessing
- proposed guessing parameter estimate.double getGuessingStdError()
void setGuessingStdError(double StdError)
StdError
- standard error for the guessing parameter estimate.double getSlipping()
void setSlipping(double slipping)
setProposalSlipping(double)
.void setProposalSlipping(double slipping)
slipping
- proposed slipping parameter estimate.double getSlippingStdError()
void setSlippingStdError(double StdError)
StdError
- standard error for the slipping parameter estimate.void setStepParameters(double[] step)
void setProposalStepParameters(double[] step)
double[] getStepParameters()
double[] getThresholdParameters()
double[] getStepStdError()
void setStepStdError(double[] stdError)
stdError
- an array of standard errors for the step parameters.void setThresholdParameters(double[] thresholds)
setFixed(boolean)
.thresholds
- array of threshold parameters.void setProposalThresholds(double[] thresholds)
setFixed(boolean)
.thresholds
- array of proposed threshold parameter estimates.double[] getThresholdStdError()
void setThresholdStdError(double[] stdError)
stdError
- an array of standard errors for the threshold paramter estimates.void setScoreWeights(double[] scoreWeight) throws org.apache.commons.math3.exception.DimensionMismatchException
scoreWeight
- an array of category score weights.org.apache.commons.math3.exception.DimensionMismatchException
void setName(VariableName name)
name
- an item nameVariableName getName()
void setGroupId(java.lang.String groupId)
groupId
- the group ID.java.lang.String getGroupId()
double getMinScoreWeight()
double getMaxScoreWeight()
byte[] getScoreWeights()
void setItemFitStatistic(ItemFitStatistic fitStatistic)
ItemFitStatistic getItemFitStatistic()
double derivTheta(double theta)
theta
- a person ability value.double itemInformationAt(double theta)
theta
- person ability value.double tStarProbability(double theta, int response, double intercept, double slope)
StockingLordMethod
).
It applies the linear transformation such that the New form is transformed to the Old Form.theta
- examinee proficiency valueresponse
- target categoryintercept
- linking coefficient for interceptslope
- linking coefficient for slopedouble tSharpProbability(double theta, int response, double intercept, double slope)
StockingLordMethod
).
It applies the linear transformation such that the Old form is transformed to the New Form.theta
- examinee proficiency valueresponse
- target categoryintercept
- linking coefficient for interceptslope
- linking coefficient for slopedouble tStarExpectedValue(double theta, double intercept, double slope)
StockingLordMethod
).
It applies the linear transformation such that the New form is transformed to the Old Form.theta
- person ability valueintercept
- intercept linking coefficient.slope
- slope linking coefficient.double tSharpExpectedValue(double theta, double intercept, double slope)
StockingLordMethod
).
It applies the linear transformation such that the Old form is transformed to the New Form.theta
- examinee proficiency valueintercept
- linking coefficient for interceptslope
- linking coefficient for slopevoid incrementMeanSigma(org.apache.commons.math3.stat.descriptive.moment.Mean mean, org.apache.commons.math3.stat.descriptive.moment.StandardDeviation sd)
mean
- item difficulty mean.sd
- item difficulty standard deviation.void incrementMeanMean(org.apache.commons.math3.stat.descriptive.moment.Mean meanDiscrimination, org.apache.commons.math3.stat.descriptive.moment.Mean meanDifficulty)
meanDiscrimination
- item discrimination mean.meanDifficulty
- item difficulty mean.IrmType getType()