Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

L

L1Norm(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
L1normalize(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
L2Norm(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
LeastSquaresCrossValidation - Class in com.itemanalysis.psychometrics.kernel
A class for computing the bandwidth by least squares cross validation kernel.
LeastSquaresCrossValidation(double[]) - Constructor for class com.itemanalysis.psychometrics.kernel.LeastSquaresCrossValidation
 
leaveOutDensityAt(double, int) - Method in class com.itemanalysis.psychometrics.kernel.LeastSquaresCrossValidation
 
leftJustifyText(String, int) - Method in class com.itemanalysis.psychometrics.texttable.TextTableRow
 
lgamma(double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
 
LikelihoodCrossValidation - Class in com.itemanalysis.psychometrics.kernel
See Silverman (1986, p.
LikelihoodCrossValidation(KernelFunction, double[]) - Constructor for class com.itemanalysis.psychometrics.kernel.LikelihoodCrossValidation
 
linearTransformation(double, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
Apply linear transformation to person and item parameter estimates.
linearTransformation(DefaultLinearTransformation, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScoreTable
A linear transformation can be applied to teh score table.
LinearTransformation - Interface in com.itemanalysis.psychometrics.scaling
 
LinearTransformationType - Enum in com.itemanalysis.psychometrics.scaling
 
listwiseSampleSize() - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
lltslv_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
The lltslv_f77 method solves Ax = b where A has the form L(L transpose) but only the lower triangular part, L, is stored.
lltslv_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
The lltslv_f77 method solves Ax = b where A has the form L(L transpose) but only the lower triangular part, L, is stored.
lnsrch_f77(int, double[], double[], double[], double[], double[], double[], Uncmin_methods, boolean[], int[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
The lnsrch_f77 method finds a next Newton iterate by line search.
lnsrch_f77(int, double[], double[], double[], double[], double[], double[], Uncmin_methods, boolean[], int[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
The lnsrch_f77 method finds a next Newton iterate by line search.
LocalLinearRegression - Class in com.itemanalysis.psychometrics.kernel
 
LocalLinearRegression(KernelFunction, Bandwidth, UniformDistributionApproximation) - Constructor for class com.itemanalysis.psychometrics.kernel.LocalLinearRegression
 
log(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
log(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Convenience method for log to a different base
logAdd(float, float) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logAdd(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the log of the sum of two numbers, which are themselves input in log form.
logDensity(double) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemParamPrior
 
logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
 
logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
Only compute part of the log of the density that depends on the parameter
logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
Only compute part of the log of the density that depends on the parameter
logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
Only compute part of the log of the density that depends on the parameter
logDensityDeriv1(double) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemParamPrior
 
logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
 
logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
First derivative of log density.
logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
First derivative of log density.
logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
First derivative of log density.
logDensityDeriv2(double) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemParamPrior
 
logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
Second derivative of log density.
logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
Second derivative of log density.
logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
Second derivative of log density.
logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
 
logInPlace(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
logLikelihood(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
computes the loglikelihood of a responseVector vector at a given value of theta.
logLikelihood(double[]) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihood
Log-likelihood for an item.
logLikelihood() - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihoodFunction
Item loglikelihood function.
loglikelihood() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
 
loglikelihood() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
logLikelihood(double[], double[], double) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
logNormalize(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Makes the values in this array sum to 1.0.
logSum(double...) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Returns the log of the sum of an array of numbers, which are themselves input in log form.
logSum(double[], int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Returns the log of the portion between fromIndex, inclusive, and toIndex, exclusive, of an array of numbers, which are themselves input in log form.
logSum(double[], int, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Returns the log of the portion between fromIndex, inclusive, and toIndex, exclusive, of an array of numbers, which are themselves input in log form.
logSum(List<Double>) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
logSum(List<Double>, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
logSum(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Returns the log of the sum of an array of numbers, which are themselves input in log form.
lowerInclusive() - Method in class com.itemanalysis.psychometrics.histogram.Bin
Gets a boolean indicating whether the bin is lower inclusive or not.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links