- L1Norm(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- L1normalize(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- L2Norm(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- LeastSquaresCrossValidation - Class in com.itemanalysis.psychometrics.kernel
-
A class for computing the bandwidth by least squares cross validation kernel.
- LeastSquaresCrossValidation(double[]) - Constructor for class com.itemanalysis.psychometrics.kernel.LeastSquaresCrossValidation
-
- leaveOutDensityAt(double, int) - Method in class com.itemanalysis.psychometrics.kernel.LeastSquaresCrossValidation
-
- leftJustifyText(String, int) - Method in class com.itemanalysis.psychometrics.texttable.TextTableRow
-
- lgamma(double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
- LikelihoodCrossValidation - Class in com.itemanalysis.psychometrics.kernel
-
See Silverman (1986, p.
- LikelihoodCrossValidation(KernelFunction, double[]) - Constructor for class com.itemanalysis.psychometrics.kernel.LikelihoodCrossValidation
-
- linearTransformation(double, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
Apply linear transformation to person and item parameter estimates.
- linearTransformation(DefaultLinearTransformation, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScoreTable
-
A linear transformation can be applied to teh score table.
- LinearTransformation - Interface in com.itemanalysis.psychometrics.scaling
-
- LinearTransformationType - Enum in com.itemanalysis.psychometrics.scaling
-
- listwiseSampleSize() - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
-
- lltslv_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
-
The lltslv_f77 method solves Ax = b where A has the form L(L transpose)
but only the lower triangular part, L, is stored.
- lltslv_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
-
The lltslv_f77 method solves Ax = b where A has the form L(L transpose)
but only the lower triangular part, L, is stored.
- lnsrch_f77(int, double[], double[], double[], double[], double[], double[], Uncmin_methods, boolean[], int[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
-
The lnsrch_f77 method finds a next Newton iterate by line search.
- lnsrch_f77(int, double[], double[], double[], double[], double[], double[], Uncmin_methods, boolean[], int[], double[], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
-
The lnsrch_f77 method finds a next Newton iterate by line search.
- LocalLinearRegression - Class in com.itemanalysis.psychometrics.kernel
-
- LocalLinearRegression(KernelFunction, Bandwidth, UniformDistributionApproximation) - Constructor for class com.itemanalysis.psychometrics.kernel.LocalLinearRegression
-
- log(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- log(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Convenience method for log to a different base
- logAdd(float, float) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Returns the log of the sum of two numbers, which are
themselves input in log form.
- logAdd(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Returns the log of the sum of two numbers, which are
themselves input in log form.
- logDensity(double) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemParamPrior
-
- logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
-
- logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
-
Only compute part of the log of the density that depends on the parameter
- logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
-
Only compute part of the log of the density that depends on the parameter
- logDensity(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
-
Only compute part of the log of the density that depends on the parameter
- logDensityDeriv1(double) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemParamPrior
-
- logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
-
- logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
-
First derivative of log density.
- logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
-
First derivative of log density.
- logDensityDeriv1(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
-
First derivative of log density.
- logDensityDeriv2(double) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemParamPrior
-
- logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
-
Second derivative of log density.
- logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
-
Second derivative of log density.
- logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
-
Second derivative of log density.
- logDensityDeriv2(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
-
- logInPlace(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- logLikelihood(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
computes the loglikelihood of a responseVector vector at a given value of theta.
- logLikelihood(double[]) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihood
-
Log-likelihood for an item.
- logLikelihood() - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihoodFunction
-
Item loglikelihood function.
- loglikelihood() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
-
- loglikelihood() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- logLikelihood(double[], double[], double) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
-
- logNormalize(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Makes the values in this array sum to 1.0.
- logSum(double...) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the log of the sum of an array of numbers, which are
themselves input in log form.
- logSum(double[], int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the log of the portion between fromIndex
, inclusive, and
toIndex
, exclusive, of an array of numbers, which are
themselves input in log form.
- logSum(double[], int, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the log of the portion between fromIndex
, inclusive, and
toIndex
, exclusive, of an array of numbers, which are
themselves input in log form.
- logSum(List<Double>) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- logSum(List<Double>, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- logSum(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Returns the log of the sum of an array of numbers, which are
themselves input in log form.
- lowerInclusive() - Method in class com.itemanalysis.psychometrics.histogram.Bin
-
Gets a boolean indicating whether the bin is lower inclusive or not.