- pairwiseAdd(int[], int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseAdd(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseAdd(float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseAddInPlace(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseAddInPlace(double[], int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseAddInPlace(double[], short[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseDivideInPlace(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Divide the first array by the second elementwise,
and store results in place.
- pairwiseMultiply(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Assumes that both arrays have same length.
- pairwiseMultiply(float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Assumes that both arrays have same length.
- pairwiseMultiply(double[], double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Puts the result in the result array.
- pairwiseMultiply(float[], float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Puts the result in the result array.
- pairwiseScaleAdd(double[], double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseScaleAddInPlace(double[], double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseSubtract(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseSubtract(float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- pairwiseSubtractInPlace(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- parseMethod(String) - Static method in enum com.itemanalysis.psychometrics.optimization.StochasticCalculateMethods
-
- parseSpecialCodeString(String) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
Parses the code string that has the format (NA,OM,NR)(-1,-1,-1).
- partialDerivative(int) - Method in class com.itemanalysis.psychometrics.analysis.AbstractDiffFunction
-
- partialDerivative(int) - Method in class com.itemanalysis.psychometrics.analysis.AbstractMultivariateFunction
-
- pcfEstimate(int, double, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
Computes ability estimate using proportional curve fitting.
- pcfStandardErrorAt(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- pearsonCorrelation(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Direct computation of Pearson product-moment correlation coefficient.
- PearsonCorrelation - Class in com.itemanalysis.psychometrics.polycor
-
This class is mainly a short-cut for the Pearson correlation.
- PearsonCorrelation(boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
-
- PearsonCorrelation() - Constructor for class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
-
- PercentileRank - Class in com.itemanalysis.psychometrics.scaling
-
- PercentileRank(Integer, Integer) - Constructor for class com.itemanalysis.psychometrics.scaling.PercentileRank
-
- PercentileRank() - Constructor for class com.itemanalysis.psychometrics.scaling.PercentileRank
-
- PERMANENT_MISSING_DATA_CODE - Static variable in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- PersonScoringType - Enum in com.itemanalysis.psychometrics.irt.estimation
-
- pF() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
-
Computes the standardized mean difference (SMD).
- points - Variable in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
-
- poisson(int, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
- PolychoricCorrelation - Interface in com.itemanalysis.psychometrics.polycor
-
- PolychoricMaximumLikelihood - Class in com.itemanalysis.psychometrics.polycor
-
- PolychoricMaximumLikelihood(double[][]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
-
- PolychoricMaximumLikelihood(TwoWayTable) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
-
- PolychoricMaximumLikelihood() - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
-
Constructor for incrementally updating data
- PolychoricMaximumLikelihood.MaximumLikelihoodFunction - Class in com.itemanalysis.psychometrics.polycor
-
- PolychoricTwoStep - Class in com.itemanalysis.psychometrics.polycor
-
- PolychoricTwoStep(double[][]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
-
Constructor for use when data have been summarized in an row x column frequency
table.
- PolychoricTwoStep(TwoWayTable) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
-
Constructor for use when data have been summarized in a TwoWayTable.
- PolychoricTwoStep() - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
-
Constructor for incrementally updating the data.
- PolychoricTwoStep.TwoStepLikelihoodFunction - Class in com.itemanalysis.psychometrics.polycor
-
Likelihood function for the two-step approximation.
- PolyserialCorrelation - Interface in com.itemanalysis.psychometrics.polycor
-
- PolyserialLogLikelihoodTwoStep - Class in com.itemanalysis.psychometrics.polycor
-
- PolyserialLogLikelihoodTwoStep(double[], int[]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialLogLikelihoodTwoStep
-
- PolyserialMaximumLikelihood - Class in com.itemanalysis.psychometrics.polycor
-
- PolyserialMaximumLikelihood(double[], int[]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialMaximumLikelihood
-
- PolyserialMaximumLikelihood() - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialMaximumLikelihood
-
Constructor for incrmentally updating object with data.
- PolyserialPlugin - Class in com.itemanalysis.psychometrics.polycor
-
This class computes the polyserial correlation between a continuous X variable and
an ordered categorical Y variable.
- PolyserialPlugin() - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialPlugin
-
- PolyserialTwoStep - Class in com.itemanalysis.psychometrics.polycor
-
- PolyserialTwoStep(Mean, StandardDeviation, double[], double[], PearsonCorrelation) - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialTwoStep
-
- populationStandardDeviation() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
Population standard deviation (i.e.
- populationVariance() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
Computes a weighted population variance (i.e.
- positionInDb() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
Mostly used for ordering variables according to their order in the database or result set
- posteriorProbability(int, int) - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
-
- posteriorProbability(int, int) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- pow(double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
raises each entry in array a by power c
- pow(float[], float) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
raises each entry in array a by power c
- pow(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Returns an approximation to Math.pow(a,b) that is ~27x faster
with a margin of error possibly around ~10%.
- powInPlace(double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Scales the values in this array by c.
- powInPlace(float[], float) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
Sets the values in this array by to their value taken to cth power.
- precision - Variable in class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
- PrincipalComponentsMethod - Class in com.itemanalysis.psychometrics.factoranalysis
-
Principal components analysis.
- PrincipalComponentsMethod(RealMatrix, int, RotationMethod) - Constructor for class com.itemanalysis.psychometrics.factoranalysis.PrincipalComponentsMethod
-
- print(boolean) - Method in class com.itemanalysis.psychometrics.irt.equating.RobustZEquatingTest
-
- print() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
-
- print() - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
-
- print() - Method in interface com.itemanalysis.psychometrics.polycor.PolychoricCorrelation
-
- print() - Method in class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
-
- print() - Method in class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
-
- print() - Method in interface com.itemanalysis.psychometrics.polycor.PolyserialCorrelation
-
- print() - Method in class com.itemanalysis.psychometrics.polycor.PolyserialMaximumLikelihood
-
- print() - Method in class com.itemanalysis.psychometrics.reliability.ConditionalSEM
-
- print() - Method in class com.itemanalysis.psychometrics.reliability.ReliabilityInterval
-
- printAttributes() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- printBasicItemStats() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
- printBasicItemStats(String) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
This method is for displaying item parameter estimates, standard errors, and other information.
- printCategoryStats() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
Polytomous items have a set of threshold statistics that must be reported.
- printContingencyTable(String, boolean) - Method in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
-
- printCorrelationMatrix(boolean) - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
-
- printCorrelationMatrix(boolean) - Method in class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
-
- printCorrelationTypes() - Method in class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
-
- printCovariance() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
-
- printCovarianceMatrix() - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
-
- printDelimitedFit() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- printDelimitedFitStatistics() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
-
- printFit() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- printFitStatistics() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
-
- printFrequencyTables() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
This method is for displaying frequency tables for each item.
- printHeader() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
-
- printHeader() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
-
Header for the item analysis output.
- printHistory() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
-
- printHistory() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.CoefficientAlpha
-
- printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.FeldtBrennan
-
- printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.FeldtGilmer
-
- printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.GuttmanLambda
-
- printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.KR21
-
- printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.RajuBeta
-
- printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in interface com.itemanalysis.psychometrics.reliability.ScoreReliability
-
A String representation of all item deleted reliability estimates.
- printItemFitStatistics() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
-
- printItemParameters() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
-
- printItemParameters() - Method in class com.itemanalysis.psychometrics.irt.estimation.StartingValues
-
- printItemStats(String) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
Creates a string of item statistics.
- printIterationHistory() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
Joint maximum likelihood estimation is iterative.
- printLatentDistribution() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
-
- printMatrix(RealMatrix) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- printMean() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
-
- printMirtFormatTable(boolean) - Method in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
-
Prints output in similar way to mirt package in R.
- printMixingProportion() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
-
- printNameChangeInformation() - Method in class com.itemanalysis.psychometrics.data.VariableName
-
- printOptionScoreKey() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- printOptionScoreKey() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
-
this method creates a String that represents the item scoring.
- printOptionScoreKey() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
-
- printOutput() - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
-
- printOutput(String) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
-
- printOutput(String, int) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
-
- printOutput(int) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
-
Formatted output of the results.
- printPersonStats() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
This method is for displaying person parameter estimates, standard errors, and other information.
- printPolychoricThresholds() - Method in class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
-
- printRatingScaleTables() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
This method is for displaying frequency tables for polytomous items.
- printRecord() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
-
- printResponseVector() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
- printResults() - Method in class com.itemanalysis.psychometrics.irt.equating.IrtTrueScoreEquating
-
Display results in text format with this method.
- printResults() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-
- printScaleQuality() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScaleQualityOutput
-
Gets a string with the formatted scale quality output.
- printScoreTable(int, double, double, DefaultLinearTransformation, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
The sum score is a sufficient statistic for the latent trait in the Rasch family of models.
- printScoreTable() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScoreTable
-
The score table is formatted for output here.
- printStartValues() - Method in class com.itemanalysis.psychometrics.factoranalysis.MINRESmethod
-
- printTable(int) - Method in class com.itemanalysis.psychometrics.scaling.NormalizedScore
-
- printTables() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
-
From 1999 South Carolina PACT Technical Documentation
- probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Comute the probability of a correct response.
- probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
- probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Computes probability of a correct response using value provided to the method, not the parameters
stored in the object.
- probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Computes the probability of a correct response given parameters stored in the object.
- probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
Computes the probability of responding in category k using item parameters passed to the method using the
iparam argument.
- probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
Computes probability of a response using parameters stored in the object.
- probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
Computes probability of a response using parameters stored in the object.
- probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
Computes probability of a response using parameters stored in the object.
- probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
Computes probability of a response using parameters stored in the object.
- probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
Computes the probability of responding in category k using item parameters passed to the method using the
iparam argument.
- probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
Computes probability of a response using parameters stored in the object.
- probability(double, int) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Computes the probability of response.
- probability(double, double[], int, double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Computes the probability of a response using item parameter values passed in iparam.
- probabilitySumAt(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
-
Sums the probability of responding in category at position k over all items in this rating scale group.
- probChiSquare - Variable in class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
-
- proportionOfExplainedVariance - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
-
- proportionOfVariance - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
-
- proposalStep - Variable in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- pythonMod(int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Returns a mod where the sign of the answer is the same as the sign of the second
argument.