Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

P

pairwiseAdd(int[], int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseAdd(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseAdd(float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseAddInPlace(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseAddInPlace(double[], int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseAddInPlace(double[], short[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseDivideInPlace(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Divide the first array by the second elementwise, and store results in place.
pairwiseMultiply(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Assumes that both arrays have same length.
pairwiseMultiply(float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Assumes that both arrays have same length.
pairwiseMultiply(double[], double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Puts the result in the result array.
pairwiseMultiply(float[], float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Puts the result in the result array.
pairwiseScaleAdd(double[], double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseScaleAddInPlace(double[], double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseSubtract(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseSubtract(float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
pairwiseSubtractInPlace(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
parseMethod(String) - Static method in enum com.itemanalysis.psychometrics.optimization.StochasticCalculateMethods
 
parseSpecialCodeString(String) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
Parses the code string that has the format (NA,OM,NR)(-1,-1,-1).
partialDerivative(int) - Method in class com.itemanalysis.psychometrics.analysis.AbstractDiffFunction
 
partialDerivative(int) - Method in class com.itemanalysis.psychometrics.analysis.AbstractMultivariateFunction
 
pcfEstimate(int, double, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
Computes ability estimate using proportional curve fitting.
pcfStandardErrorAt(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
 
pearsonCorrelation(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Direct computation of Pearson product-moment correlation coefficient.
PearsonCorrelation - Class in com.itemanalysis.psychometrics.polycor
This class is mainly a short-cut for the Pearson correlation.
PearsonCorrelation(boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
 
PearsonCorrelation() - Constructor for class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
 
PercentileRank - Class in com.itemanalysis.psychometrics.scaling
 
PercentileRank(Integer, Integer) - Constructor for class com.itemanalysis.psychometrics.scaling.PercentileRank
 
PercentileRank() - Constructor for class com.itemanalysis.psychometrics.scaling.PercentileRank
 
PERMANENT_MISSING_DATA_CODE - Static variable in class com.itemanalysis.psychometrics.data.SpecialDataCodes
 
PersonScoringType - Enum in com.itemanalysis.psychometrics.irt.estimation
 
pF() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
Computes the standardized mean difference (SMD).
points - Variable in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
 
poisson(int, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
 
PolychoricCorrelation - Interface in com.itemanalysis.psychometrics.polycor
 
PolychoricMaximumLikelihood - Class in com.itemanalysis.psychometrics.polycor
 
PolychoricMaximumLikelihood(double[][]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
 
PolychoricMaximumLikelihood(TwoWayTable) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
 
PolychoricMaximumLikelihood() - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
Constructor for incrementally updating data
PolychoricMaximumLikelihood.MaximumLikelihoodFunction - Class in com.itemanalysis.psychometrics.polycor
 
PolychoricTwoStep - Class in com.itemanalysis.psychometrics.polycor
 
PolychoricTwoStep(double[][]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
Constructor for use when data have been summarized in an row x column frequency table.
PolychoricTwoStep(TwoWayTable) - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
Constructor for use when data have been summarized in a TwoWayTable.
PolychoricTwoStep() - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
Constructor for incrementally updating the data.
PolychoricTwoStep.TwoStepLikelihoodFunction - Class in com.itemanalysis.psychometrics.polycor
Likelihood function for the two-step approximation.
PolyserialCorrelation - Interface in com.itemanalysis.psychometrics.polycor
 
PolyserialLogLikelihoodTwoStep - Class in com.itemanalysis.psychometrics.polycor
 
PolyserialLogLikelihoodTwoStep(double[], int[]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialLogLikelihoodTwoStep
 
PolyserialMaximumLikelihood - Class in com.itemanalysis.psychometrics.polycor
 
PolyserialMaximumLikelihood(double[], int[]) - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialMaximumLikelihood
 
PolyserialMaximumLikelihood() - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialMaximumLikelihood
Constructor for incrmentally updating object with data.
PolyserialPlugin - Class in com.itemanalysis.psychometrics.polycor
This class computes the polyserial correlation between a continuous X variable and an ordered categorical Y variable.
PolyserialPlugin() - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialPlugin
 
PolyserialTwoStep - Class in com.itemanalysis.psychometrics.polycor
 
PolyserialTwoStep(Mean, StandardDeviation, double[], double[], PearsonCorrelation) - Constructor for class com.itemanalysis.psychometrics.polycor.PolyserialTwoStep
 
populationStandardDeviation() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
Population standard deviation (i.e.
populationVariance() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
Computes a weighted population variance (i.e.
positionInDb() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
Mostly used for ordering variables according to their order in the database or result set
posteriorProbability(int, int) - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
 
posteriorProbability(int, int) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
pow(double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
raises each entry in array a by power c
pow(float[], float) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
raises each entry in array a by power c
pow(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns an approximation to Math.pow(a,b) that is ~27x faster with a margin of error possibly around ~10%.
powInPlace(double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Scales the values in this array by c.
powInPlace(float[], float) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Sets the values in this array by to their value taken to cth power.
precision - Variable in class com.itemanalysis.psychometrics.scaling.ScoreBounds
 
PrincipalComponentsMethod - Class in com.itemanalysis.psychometrics.factoranalysis
Principal components analysis.
PrincipalComponentsMethod(RealMatrix, int, RotationMethod) - Constructor for class com.itemanalysis.psychometrics.factoranalysis.PrincipalComponentsMethod
 
print(boolean) - Method in class com.itemanalysis.psychometrics.irt.equating.RobustZEquatingTest
 
print() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
 
print() - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
 
print() - Method in interface com.itemanalysis.psychometrics.polycor.PolychoricCorrelation
 
print() - Method in class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
 
print() - Method in class com.itemanalysis.psychometrics.polycor.PolychoricTwoStep
 
print() - Method in interface com.itemanalysis.psychometrics.polycor.PolyserialCorrelation
 
print() - Method in class com.itemanalysis.psychometrics.polycor.PolyserialMaximumLikelihood
 
print() - Method in class com.itemanalysis.psychometrics.reliability.ConditionalSEM
 
print() - Method in class com.itemanalysis.psychometrics.reliability.ReliabilityInterval
 
printAttributes() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
 
printBasicItemStats() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
 
printBasicItemStats(String) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
This method is for displaying item parameter estimates, standard errors, and other information.
printCategoryStats() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
Polytomous items have a set of threshold statistics that must be reported.
printContingencyTable(String, boolean) - Method in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
 
printCorrelationMatrix(boolean) - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
printCorrelationMatrix(boolean) - Method in class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
 
printCorrelationTypes() - Method in class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
 
printCovariance() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
 
printCovarianceMatrix() - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
printDelimitedFit() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
printDelimitedFitStatistics() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
 
printFit() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
printFitStatistics() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
 
printFrequencyTables() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
This method is for displaying frequency tables for each item.
printHeader() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
 
printHeader() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
Header for the item analysis output.
printHistory() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
 
printHistory() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.CoefficientAlpha
 
printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.FeldtBrennan
 
printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.FeldtGilmer
 
printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.GuttmanLambda
 
printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.KR21
 
printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.reliability.RajuBeta
 
printItemDeletedSummary(ArrayList<VariableAttributes>) - Method in interface com.itemanalysis.psychometrics.reliability.ScoreReliability
A String representation of all item deleted reliability estimates.
printItemFitStatistics() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
printItemParameters() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
printItemParameters() - Method in class com.itemanalysis.psychometrics.irt.estimation.StartingValues
 
printItemStats(String) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
Creates a string of item statistics.
printIterationHistory() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
Joint maximum likelihood estimation is iterative.
printLatentDistribution() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
printMatrix(RealMatrix) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
printMean() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
 
printMirtFormatTable(boolean) - Method in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
Prints output in similar way to mirt package in R.
printMixingProportion() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
 
printNameChangeInformation() - Method in class com.itemanalysis.psychometrics.data.VariableName
 
printOptionScoreKey() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
 
printOptionScoreKey() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
this method creates a String that represents the item scoring.
printOptionScoreKey() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
printOutput() - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
 
printOutput(String) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
 
printOutput(String, int) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
 
printOutput(int) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
Formatted output of the results.
printPersonStats() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
This method is for displaying person parameter estimates, standard errors, and other information.
printPolychoricThresholds() - Method in class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
 
printRatingScaleTables() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
This method is for displaying frequency tables for polytomous items.
printRecord() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
 
printResponseVector() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
 
printResults() - Method in class com.itemanalysis.psychometrics.irt.equating.IrtTrueScoreEquating
Display results in text format with this method.
printResults() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
printScaleQuality() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScaleQualityOutput
Gets a string with the formatted scale quality output.
printScoreTable(int, double, double, DefaultLinearTransformation, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
The sum score is a sufficient statistic for the latent trait in the Rasch family of models.
printScoreTable() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScoreTable
The score table is formatted for output here.
printStartValues() - Method in class com.itemanalysis.psychometrics.factoranalysis.MINRESmethod
 
printTable(int) - Method in class com.itemanalysis.psychometrics.scaling.NormalizedScore
 
printTables() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
From 1999 South Carolina PACT Technical Documentation
probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
Comute the probability of a correct response.
probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
 
probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
Computes probability of a correct response using value provided to the method, not the parameters stored in the object.
probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
Computes the probability of a correct response given parameters stored in the object.
probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
Computes the probability of responding in category k using item parameters passed to the method using the iparam argument.
probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
Computes probability of a response using parameters stored in the object.
probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
 
probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
Computes probability of a response using parameters stored in the object.
probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
 
probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
Computes probability of a response using parameters stored in the object.
probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
 
probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
Computes probability of a response using parameters stored in the object.
probability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
Computes the probability of responding in category k using item parameters passed to the method using the iparam argument.
probability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
Computes probability of a response using parameters stored in the object.
probability(double, int) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
Computes the probability of response.
probability(double, double[], int, double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
Computes the probability of a response using item parameter values passed in iparam.
probabilitySumAt(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
Sums the probability of responding in category at position k over all items in this rating scale group.
probChiSquare - Variable in class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
 
proportionOfExplainedVariance - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
 
proportionOfVariance - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
 
proposalStep - Variable in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
 
pythonMod(int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns a mod where the sign of the answer is the same as the sign of the second argument.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links