- iclbic() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
-
- IdentityMatrix - Class in com.itemanalysis.psychometrics.statistics
-
- IdentityMatrix(int) - Constructor for class com.itemanalysis.psychometrics.statistics.IdentityMatrix
-
- IdentityVector - Class in com.itemanalysis.psychometrics.statistics
-
- IdentityVector(int) - Constructor for class com.itemanalysis.psychometrics.statistics.IdentityVector
-
- inBin(double) - Method in class com.itemanalysis.psychometrics.histogram.Bin
-
Tests whether a value belongs to this bin.
- increment(Object, Double) - Method in class com.itemanalysis.psychometrics.cmh.CmhTable
-
- increment(double, String, double) - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
-
- increment(double, double) - Method in class com.itemanalysis.psychometrics.distribution.UserSuppliedDistributionApproximation
-
Deprecated.
Increment the array of evaluation points and weights with the provided values.
- increment(double) - Method in class com.itemanalysis.psychometrics.distribution.UserSuppliedDistributionApproximation
-
Deprecated.
An evaluation points.
- increment(double) - Method in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
-
Update the summary statistics with a new value.
- increment(double) - Method in class com.itemanalysis.psychometrics.histogram.Bin
-
Incrementally count a value as belonging to this bin if it fits within the bounds.
- increment(double, double) - Method in class com.itemanalysis.psychometrics.histogram.Bin
-
Incrementally count a value as belonging to this bin if it fits within the bounds.
- increment(double) - Method in class com.itemanalysis.psychometrics.histogram.Cut
-
- increment(double) - Method in class com.itemanalysis.psychometrics.histogram.Histogram
-
Incrementally counts the number of observations in each bin.
- increment(double, double) - Method in class com.itemanalysis.psychometrics.histogram.Histogram
-
- increment(EstepEstimates) - Method in class com.itemanalysis.psychometrics.irt.estimation.EstepEstimates
-
- increment(double, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitG2
-
Increment fit statistic.
- increment(double, int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitG2
-
- increment(int, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitSX2
-
Increment fit statistic assuming there is a table row for each possible summed score.
- increment(int, int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitSX2
-
- increment(byte) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
Count frequency of responses in each score category.
- increment(double, double, ItemResponseModel) - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschCategoryFitStatistic
-
- increment(ItemResponseModel, double, byte) - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschFitStatistics
-
- increment(double, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScaleQualityStatistics
-
An incremental update to the scale quality statistics.
- increment(double) - Method in class com.itemanalysis.psychometrics.kernel.KernelDensity
-
Incremental computation of the density.
- increment(double, double) - Method in class com.itemanalysis.psychometrics.kernel.KernelRegression
-
Increment the estimate by x and y
- increment(double, double, double) - Method in class com.itemanalysis.psychometrics.kernel.KernelRegression
-
- increment(Object, double) - Method in class com.itemanalysis.psychometrics.measurement.CategoryResponseSummary
-
Use this incremental update for each response option.
- increment(double, double) - Method in class com.itemanalysis.psychometrics.measurement.CategoryResponseSummary
-
Use this incremental update if the item is continuous or the response is already scored.
- increment(RawScore, Object) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
-
Incrementally update item statistics
- increment(double, Object) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
-
- increment(double, double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemStatistics
-
Incrementally update the item statistics
- increment(String, double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
-
- increment(double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
-
- increment(double, String) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- increment(double, String, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- increment(double, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- increment(double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- increment(double, int) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- increment(double, int, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- increment(double, String) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- increment(double, String, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- increment(double, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- increment(double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- increment(double, int) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- increment(double, int, double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- increment(String) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- increment(String, double) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- increment(int) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- increment(int, double) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- increment(double) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- increment(double, double) - Method in interface com.itemanalysis.psychometrics.measurement.ItemResponseSummary
-
- increment(double, double) - Method in class com.itemanalysis.psychometrics.measurement.ItemStats
-
Incrementally update the item statistics
- increment(double, Object) - Method in class com.itemanalysis.psychometrics.measurement.KernelRegressionCategories
-
- increment(double, Object) - Method in class com.itemanalysis.psychometrics.measurement.KernelRegressionItem
-
- increment(String) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Increment frequency count of a response by one.
- increment(String, double) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Increment frequency count of a response by an amount equal to freqWeight.
- increment(int) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Increment frequency count of a response by one.
- increment(int, double) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Increment frequency count of a response by an amount equal to freqWeight.
- increment(double) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Increment frequency count of a response by one.
- increment(double, double) - Method in class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
-
Increment frequency count of a response by an amount equal to freqWeight.
- increment(RawScore) - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
-
- increment(double) - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
-
- increment(int) - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
- increment(int, double) - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
- increment(double) - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
- increment(double, double) - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
- increment(String) - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
A unit increment of the item reponse count.
- increment(String, double) - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
-
An increment of the item response count that uses a frequency weight.
- increment(int, int) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
-
- increment(char, char) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
-
- increment(long, long) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
-
- increment(double, int) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolyserialCorrelation
-
- increment(Double, Double) - Method in class com.itemanalysis.psychometrics.polycor.Covariance
-
Update formula for recursive on-line (i.e.
- increment(int, int, Double, Double) - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
-
Increment values in the matrix.
- increment(int, int, double, double) - Method in class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
-
Increments the appropriate correlation object.
- increment(Double, Double) - Method in class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
-
- increment(double, int) - Method in class com.itemanalysis.psychometrics.polycor.PolyserialPlugin
-
- increment(Double) - Method in class com.itemanalysis.psychometrics.reliability.CSEMList
-
Increment for each true score provided.
- increment(Double) - Method in class com.itemanalysis.psychometrics.scaling.RawScore
-
- increment(Double, Double) - Method in class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
increment according to item scores
- increment(double) - Method in class com.itemanalysis.psychometrics.statistics.StorelessDescriptiveStatistics
-
- incremental - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
-
- incremental - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolyserialCorrelation
-
- incrementByItemScores(ArrayList<VariableAttributes>) - Method in class com.itemanalysis.psychometrics.scaling.ScoreBounds
-
- incrementDindex(Object, double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.CategoryResponseSummary
-
- incrementDindex(double, double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.CategoryResponseSummary
-
This method is called when computing teh D-index for the overall item.
- incrementDindex(Object, double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
-
- incrementDindex(double, double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemStatistics
-
The D index must be incremented in a second loop after test scores have been computed and
percentiles computed.
- incrementDindex(String, double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
-
- incrementDindex(double, double, double, double) - Method in class com.itemanalysis.psychometrics.measurement.ItemStats
-
The D index must be incremented in a second loop after test scores have been computed and
percentiles computed.
- incrementFitStatistics(ItemResponseModel, double, byte) - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
-
Category fit statistics are incrementally updated with repeated calls to this method.
- incrementLoglikelihood(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.EstepEstimates
-
- incrementMeanMean(Mean, Mean) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Mean/mean linking coefficients are computed from the mean item difficulty and mean item discrimination.
- incrementMeanMean(Mean, Mean) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Mean/mean linking coefficients are computed from the mean item difficulty and mean item discrimination.
- incrementMeanMean(Mean, Mean) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- incrementMeanMean(Mean, Mean) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- incrementMeanMean(Mean, Mean) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- incrementMeanMean(Mean, Mean) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- incrementMeanMean(Mean, Mean) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- incrementMeanMean(Mean, Mean) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Mean/mean linking coefficients are computed from teh mean item difficulty and mean item discrimination.
- incrementMeanSigma(Mean, StandardDeviation) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Mean/sigma linking coefficients are computed from the mean and standard deviation of item difficulty.
- incrementMeanSigma(Mean, StandardDeviation) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Mean/sigma linking coefficients are computed from the mean and standard deviation of item difficulty.
- incrementMeanSigma(Mean, StandardDeviation) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- incrementMeanSigma(Mean, StandardDeviation) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- incrementMeanSigma(Mean, StandardDeviation) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
- incrementMeanSigma(Mean, StandardDeviation) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- incrementMeanSigma(Mean, StandardDeviation) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- incrementMeanSigma(Mean, StandardDeviation) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Mean/sigma linking coefficients are computed from teh mean and standard deviation of item difficulty.
- incrementNt(int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.EstepEstimates
-
- incrementPartTestReliability(int, int, double, double) - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
-
- incrementPartTestReliability(RawScore) - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
-
- incrementReliability(int, int, double, double) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
-
- incrementReliability(int, int, double, double) - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
-
- incrementResponseVector(Integer, Object, Double) - Method in class com.itemanalysis.psychometrics.scaling.RawScore
-
For holding an examinee's vector of item responses.
- incrementRjkt(int, int, int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.EstepEstimates
-
- incrementRjkt(int, int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.EstepItemEstimates
-
- incrementSubScaleScore(String, double) - Method in class com.itemanalysis.psychometrics.scaling.RawScore
-
- indexOf(int, int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- InformationFitCriteria - Class in com.itemanalysis.psychometrics.mixture
-
- InformationFitCriteria(MixtureModel) - Constructor for class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
-
- InformationFitCriteria.FitCriterion - Enum in com.itemanalysis.psychometrics.mixture
-
- initialize() - Method in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
-
- initialize() - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
-
- initializeCategories() - Method in class com.itemanalysis.psychometrics.measurement.KernelRegressionCategories
-
- initializeCategories() - Method in class com.itemanalysis.psychometrics.measurement.KernelRegressionItem
-
- initializeExpectedFrequencies() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitG2
-
- innerProduct(double[], double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- innerProduct(float[], float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
-
- interpolatorUpdateNeeded - Variable in class com.itemanalysis.psychometrics.histogram.Histogram
-
- interpolatorUpdateNeeded - Variable in class com.itemanalysis.psychometrics.kernel.KernelDensity
-
- intPow(int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Exponentiation like we learned in grade school:
multiply b by itself e times.
- intPow(float, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Exponentiation like we learned in grade school:
multiply b by itself e times.
- intPow(double, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Exponentiation like we learned in grade school:
multiply b by itself e times.
- intValue() - Method in class com.itemanalysis.psychometrics.scaling.RawScore
-
- InvalidElementException(String) - Constructor for exception com.itemanalysis.psychometrics.optimization.ArrayMath.InvalidElementException
-
- irm - Variable in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
-
- Irm3PL - Class in com.itemanalysis.psychometrics.irt.model
-
An implementation of
AbstractItemResponseModel
that allows for the three-parameter logistic (3PL) model,
two-parameter logistic (2PL) model, one-parameter logistic (1PL) model, and the Rasch model.
- Irm3PL(double, double, double, double) - Constructor for class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Constructor for three parameter logistic model
- Irm3PL(double, double, double) - Constructor for class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Constructor for two parameter logistic model.
- Irm3PL(double, double) - Constructor for class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Constructor for one parameter logistic model
- Irm4PL - Class in com.itemanalysis.psychometrics.irt.model
-
Four parameter logistic model.
- Irm4PL(double, double, double, double, double) - Constructor for class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
Constructor for four parameter logistic model
- IrmBinary - Class in com.itemanalysis.psychometrics.irt.model
-
This class provides a cleaner interface to the Irm3PL class.
- IrmBinary(double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmBinary
-
- IrmBinary(double, double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmBinary
-
- IrmBinary(double, double, double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmBinary
-
- IrmCollection - Class in com.itemanalysis.psychometrics.irt.model
-
This class represents the item response models for an entire test or collection of item response models.
- IrmCollection() - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmCollection
-
- IrmCollection.GroupModelIterator - Class in com.itemanalysis.psychometrics.irt.model
-
A class that iterates over the item response model objects for a specific group of items.
- IrmGPCM - Class in com.itemanalysis.psychometrics.irt.model
-
This version of the Generalized Partial Credit Model (GPCM) uses a discrimination
parameter and two or more step parameters.
- IrmGPCM(double, double[], double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
Default constructor
- IrmGPCM2 - Class in com.itemanalysis.psychometrics.irt.model
-
This version of the Generalized Partial Credit Model (GPCM) uses a discrimination
parameter, a difficulty parameter (b), and one or more threshold parameters.
- IrmGPCM2(double, double, double[], double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
Default constructor
- IrmGRM - Class in com.itemanalysis.psychometrics.irt.model
-
Samejima's graded response model.
- IrmGRM(double, double[], double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
Default constructor
- IrmPCM - Class in com.itemanalysis.psychometrics.irt.model
-
This version of the Partial Credit Model (GPCM) uses a difficulty parameter (b),
and one or more threshold parameters.
- IrmPCM(double, double[], double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
Default constructor
- IrmPCM2 - Class in com.itemanalysis.psychometrics.irt.model
-
Class that implements the partial credit model.
- IrmPCM2(double[], double) - Constructor for class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
Default constructor for an m category item.
- IrmType - Enum in com.itemanalysis.psychometrics.irt.model
-
- IrtEstimation - Interface in com.itemanalysis.psychometrics.irt.estimation
-
Interface for IRT estimation.
- IrtExaminee - Class in com.itemanalysis.psychometrics.irt.estimation
-
This class holds an item responseVector vector for an examinee and stores a count of the
number of examinees with the same responseVector vector.
- IrtExaminee(String, ItemResponseModel[], ItemResponseVector) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- IrtExaminee(ItemResponseModel[], ItemResponseVector) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- IrtExaminee(String, ItemResponseModel[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
this constructor allows a single instance to be used for estimating ability for multiple people
by calling setResponseVector() prior to calling for amethod to compute ability.
- IrtExaminee(ItemResponseModel[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
this constructor allows a single instance to be used for estimating ability for multiple people
by calling setResponseVector() prior to calling for amethod to compute ability.
- IrtExaminee(ArrayList<ItemResponseModel>) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- IrtExaminee(LinkedHashMap<VariableName, ItemResponseModel>) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- IrtObservedScoreCollection - Class in com.itemanalysis.psychometrics.irt.estimation
-
This class computes the IRT observed score distribution for an entire test.
- IrtObservedScoreCollection(ItemResponseModel[], DistributionApproximation) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtObservedScoreCollection
-
- IrtObservedScoreDistribution - Class in com.itemanalysis.psychometrics.irt.estimation
-
This class computes the distribution of summed scores for a given set of item response models.
- IrtObservedScoreDistribution(ItemResponseModel[], DistributionApproximation) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IrtObservedScoreDistribution
-
- IrtScaleLinking - Class in com.itemanalysis.psychometrics.irt.equating
-
- IrtScaleLinking(LinkedHashMap<String, ItemResponseModel>, LinkedHashMap<String, ItemResponseModel>, DistributionApproximation, DistributionApproximation, boolean) - Constructor for class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
-
- IrtScaleLinking(LinkedHashMap<String, ItemResponseModel>, LinkedHashMap<String, ItemResponseModel>, DistributionApproximation, DistributionApproximation) - Constructor for class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
-
- IrtTrueScoreEquating - Class in com.itemanalysis.psychometrics.irt.equating
-
- IrtTrueScoreEquating(LinkedHashMap<String, ItemResponseModel>, LinkedHashMap<String, ItemResponseModel>) - Constructor for class com.itemanalysis.psychometrics.irt.equating.IrtTrueScoreEquating
-
- isamax_f77(int, double[], int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
-
This method finds the index of the element of a vector
that has the maximum absolute value.
- isCloseTo(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
- isContinuous() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
-
- isContinuous(boolean) - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
-
- isContinuous() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
-
- isContinuous(boolean) - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
-
- isDangerous(double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Returns true if the argument is a "dangerous" double to have
around, namely one that is infinite, NaN or zero.
- isExtreme() - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
-
- isExtreme() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
A boolean method that returns true if the item is an extreme minimum or and extreme maximum.
- isExtremeMaximum() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
An extreme maximum item score is one in which the raw item score equals the minimum possible raw item score.
- isExtremeMinimum() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
An extreme minimum item score is one in which the raw item score equals the maximum possible raw item score.
- isFixed - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- isFixed() - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
-
- isFixed - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- isFixed() - Method in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
-
- isFixed() - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
A fixed item will use its initial values as the item parameters and no further estimation or update will be
applied to the item parameters.
- isFixed() - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
-
- isMissing(String) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- isMissing(Object) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- isMissing(double) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- isMissing(int) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- isMissing(String) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
-
- isNotReached(Object) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- isOmitted(Object) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
-
- isVeryDangerous(double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
-
Returns true if the argument is a "very dangerous" double to have
around, namely one that is infinite or NaN.
- itemDeletedReliability() - Method in class com.itemanalysis.psychometrics.reliability.CoefficientAlpha
-
Computes reliability with each item omitted in turn.
- itemDeletedReliability() - Method in class com.itemanalysis.psychometrics.reliability.FeldtBrennan
-
Computes reliability with each item omitted in turn.
- itemDeletedReliability() - Method in class com.itemanalysis.psychometrics.reliability.FeldtGilmer
-
Computes reliability with each item omitted in turn.
- itemDeletedReliability() - Method in class com.itemanalysis.psychometrics.reliability.GuttmanLambda
-
Computes reliability with each item omitted in turn.
- itemDeletedReliability() - Method in class com.itemanalysis.psychometrics.reliability.KR21
-
- itemDeletedReliability() - Method in class com.itemanalysis.psychometrics.reliability.RajuBeta
-
- itemDeletedReliability() - Method in interface com.itemanalysis.psychometrics.reliability.ScoreReliability
-
An array of reliability estimates without the item indexed by the position in the array.
- itemDeletedString() - Method in class com.itemanalysis.psychometrics.reliability.ReliabilitySummary
-
- ItemFitG2 - Class in com.itemanalysis.psychometrics.irt.estimation
-
- ItemFitG2(ItemResponseModel, Cut, int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemFitG2
-
This constructor is designed for the case where the number of table rows and the boundaries
are specified in thetaCut.
- ItemFitStatistic - Interface in com.itemanalysis.psychometrics.irt.estimation
-
- ItemFitSX2 - Class in com.itemanalysis.psychometrics.irt.estimation
-
Computes the generalized S-X2 statistic developed by:
Kang, T., and Chen, T., T.
- ItemFitSX2(IrtObservedScoreDistribution, IrtObservedScoreDistribution, ItemResponseModel, int, int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemFitSX2
-
- itemInformationAt(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
-
Computes the item information function at theta.
- itemInformationAt(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
-
- itemInformationAt(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
-
- itemInformationAt(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
-
- itemInformationAt(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
-
From Ostini and Nering but needs checking.
- itemInformationAt(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
-
- itemInformationAt(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
-
- itemInformationAt(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
-
Computes the item information function at theta.
- ItemLogLikelihood - Class in com.itemanalysis.psychometrics.irt.estimation
-
This class contains contains methods for the loglikelihood function for an item, which is the
value of the objective function that is being minimized in the Mstep to obtain the maximum
likelihood or Bayes modal estimates.
- ItemLogLikelihood() - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemLogLikelihood
-
- ItemLogLikelihoodFunction - Interface in com.itemanalysis.psychometrics.irt.estimation
-
- ItemParamPrior - Interface in com.itemanalysis.psychometrics.irt.estimation
-
- ItemParamPriorBeta - Class in com.itemanalysis.psychometrics.irt.estimation
-
- ItemParamPriorBeta(double, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
-
- ItemParamPriorBeta4 - Class in com.itemanalysis.psychometrics.irt.estimation
-
Implementation of an ItemParamPrior for the Beta4 distribution.
- ItemParamPriorBeta4() - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
-
- ItemParamPriorBeta4(double, double, double, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
-
- ItemParamPriorLogNormal - Class in com.itemanalysis.psychometrics.irt.estimation
-
Implementation of an ItemParamPrior for the LogNormal distribution.
- ItemParamPriorLogNormal() - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
-
Constructor for the standard lognormal distribution
- ItemParamPriorLogNormal(double[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
-
Constructor takes an array as the input parameters.
- ItemParamPriorLogNormal(double, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
-
Constructor taking the mean and standard deviation as arguments.
- ItemParamPriorNormal - Class in com.itemanalysis.psychometrics.irt.estimation
-
Implementation of an ItemParamPrior for the Normal distribution.
- ItemParamPriorNormal() - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
-
Constructor for the standard normal distribution
- ItemParamPriorNormal(double[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
-
A constructor for an array of parameters.
- ItemParamPriorNormal(double, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
-
- ItemPolytomous - Class in com.itemanalysis.psychometrics.irt.estimation
-
- ItemPolytomous() - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemPolytomous
-
- itemProx() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
-
Computes PROX difficulty estimates for item difficulty.
- ItemResponseComparator() - Constructor for class com.itemanalysis.psychometrics.measurement.DefaultItemScoring.ItemResponseComparator
-
- ItemResponseFileSummary - Class in com.itemanalysis.psychometrics.irt.estimation
-
- ItemResponseFileSummary() - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseFileSummary
-
- ItemResponseModel - Interface in com.itemanalysis.psychometrics.irt.model
-
An item response model describes the relationship between the probability of a score category and person
ability (i.e.
- ItemResponseModelWithGradient - Interface in com.itemanalysis.psychometrics.irt.model
-
- ItemResponseSimulator - Class in com.itemanalysis.psychometrics.irt.estimation
-
ItemResponseSimulator.java creates data that contain item responses.
- ItemResponseSimulator(double[], ItemResponseModel[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSimulator
-
Allows users to provide their own array of examinee ability values and item response models.
- ItemResponseSimulator(int, ItemResponseModel[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSimulator
-
Allows users to specify the number of examinee ability parameters that will be drawn from
a standrad normal distribution.
- ItemResponseSummary - Class in com.itemanalysis.psychometrics.irt.estimation
-
- ItemResponseSummary(VariableName, String, double, byte[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
Create an item response summary object with information about the variable.
- ItemResponseSummary(VariableName, double, byte[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
- ItemResponseSummary(VariableName, byte[]) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
-
- ItemResponseSummary - Interface in com.itemanalysis.psychometrics.measurement
-
- ItemResponseVector - Class in com.itemanalysis.psychometrics.irt.estimation
-
A class for storing the item response vector and frequency counts.
- ItemResponseVector(String, byte[], VariableName[], double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
- ItemResponseVector(String, byte[], ArrayList<VariableName>, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
- ItemResponseVector(String, ArrayList<Byte>, ArrayList<VariableName>, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
- ItemResponseVector(String, byte[], double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
A constructor that is designed for storing all response vectors during MML estimation.
- ItemResponseVector(byte[], double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
A constructor that is designed for storing all response vectors during MML estimation.
- ItemResponseVector(String, int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
A constructor that takes an argument for the group ID and number of items.
- ItemResponseVector(int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
-
A constructor that only requires the number of items.
- ItemScoring - Interface in com.itemanalysis.psychometrics.measurement
-
- ItemStats - Class in com.itemanalysis.psychometrics.measurement
-
This class computes statistics for individual item response options.
- ItemStats(Object, boolean, boolean, boolean) - Constructor for class com.itemanalysis.psychometrics.measurement.ItemStats
-
- ItemStats(Object, boolean, boolean, boolean, boolean) - Constructor for class com.itemanalysis.psychometrics.measurement.ItemStats
-
- ItemType - Enum in com.itemanalysis.psychometrics.data
-
Copyright 2012 J.
- IterationRecord - Class in com.itemanalysis.psychometrics.irt.estimation
-
A class for storing the maximum change in logits and the log-likelihood at each iteration.
- IterationRecord(double, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.IterationRecord
-
Each instance stores information about the iteration.
- iterator() - Method in class com.itemanalysis.psychometrics.histogram.Histogram
-
Gets the iterator for the array list of bin objects.
- iterator() - Method in class com.itemanalysis.psychometrics.irt.model.IrmCollection
-
An iterator for all item response models in this collection (i.e.
- iterator() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- iterator() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- iteratorAt(double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
-
- iteratorAt(double) - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
-
- itertaions() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
-