Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

C

caic() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
 
calculatesHessianVectorProduct() - Method in enum com.itemanalysis.psychometrics.optimization.StochasticCalculateMethods
 
call() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
castToInt(double[][]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
Category - Class in com.itemanalysis.psychometrics.data
CategoryScoring defines the scores assigned to values in the data.
Category(Object, double) - Constructor for class com.itemanalysis.psychometrics.data.Category
 
categoryIterator() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
Iterator for the catgory objects
categoryIterator() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
Return category iterator for binary and polytomous items.
categoryIterator() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
categoryMap - Variable in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
 
CategoryResponseSummary - Class in com.itemanalysis.psychometrics.measurement
 
CategoryResponseSummary(VariableName, Object, boolean, DiscriminationType) - Constructor for class com.itemanalysis.psychometrics.measurement.CategoryResponseSummary
 
centerText(String, int) - Method in class com.itemanalysis.psychometrics.texttable.TextTableRow
 
CGMinimizer - Class in com.itemanalysis.psychometrics.optimization
Conjugate-gradientAt implementation based on the code in Numerical Recipes in C.
CGMinimizer() - Constructor for class com.itemanalysis.psychometrics.optimization.CGMinimizer
Basic constructor, use this.
CGMinimizer(boolean) - Constructor for class com.itemanalysis.psychometrics.optimization.CGMinimizer
Pass in false to get per-iteration progress reports (to stderr).
CGMinimizer(Function) - Constructor for class com.itemanalysis.psychometrics.optimization.CGMinimizer
Perform minimization with monitoring.
checkConstraints(Double) - Method in class com.itemanalysis.psychometrics.scaling.ScoreBounds
 
checkForDroppping() - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
Threshold parameters cannot be estimated if one or more categories do not have any observations.
checkPrecisionOnly(Double) - Method in class com.itemanalysis.psychometrics.scaling.ScoreBounds
 
chiSquare - Variable in class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood
 
chiSquare2by2(int, int, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Find a 2x2 chi-square value.
chlhsn_f77(int, double[][], double, double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
The chlhsn_f77 method finds "THE L(L-TRANSPOSE) [WRITTEN LL+] DECOMPOSITION OF THE PERTURBED MODEL HESSIAN MATRIX A+MU*I(WHERE MU\0 AND I IS THE IDENTITY MATRIX) WHICH IS SAFELY POSITIVE DEFINITE.
chlhsn_f77(int, double[][], double, double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
The chlhsn_f77 method finds "THE L(L-TRANSPOSE) [WRITTEN LL+] DECOMPOSITION OF THE PERTURBED MODEL HESSIAN MATRIX A+MU*I(WHERE MU\0 AND I IS THE IDENTITY MATRIX) WHICH IS SAFELY POSITIVE DEFINITE.
choldc_f77(int, double[][], double, double, double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
The choldc_f77 method finds "THE PERTURBED L(L-TRANSPOSE) [WRITTEN LL+] DECOMPOSITION OF A+D, WHERE D IS A NON-NEGATIVE DIAGONAL MATRIX ADDED TO A IF NECESSARY TO ALLOW THE CHOLESKY DECOMPOSITION TO CONTINUE." Translated by Steve Verrill, April 15, 1998.
choldc_f77(int, double[][], double, double, double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
The choldc_f77 method finds "THE PERTURBED L(L-TRANSPOSE) [WRITTEN LL+] DECOMPOSITION OF A+D, WHERE D IS A NON-NEGATIVE DIAGONAL MATRIX ADDED TO A IF NECESSARY TO ALLOW THE CHOLESKY DECOMPOSITION TO CONTINUE." Translated by Steve Verrill, April 15, 1998.
ClassicalItem - Class in com.itemanalysis.psychometrics.measurement
This is the main class for conducting a classical item analysis.
ClassicalItem(VariableAttributes, boolean, boolean, boolean, boolean) - Constructor for class com.itemanalysis.psychometrics.measurement.ClassicalItem
 
ClassicalItemStatistics - Class in com.itemanalysis.psychometrics.measurement
 
ClassicalItemStatistics(Object, boolean, boolean) - Constructor for class com.itemanalysis.psychometrics.measurement.ClassicalItemStatistics
 
ClassicalItemStatistics(Object, boolean, boolean, boolean) - Constructor for class com.itemanalysis.psychometrics.measurement.ClassicalItemStatistics
 
ClassicalItemSummary - Class in com.itemanalysis.psychometrics.measurement
 
ClassicalItemSummary(VariableAttributes, boolean, boolean, DiscriminationType) - Constructor for class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
 
ClassicalTestSummary - Class in com.itemanalysis.psychometrics.measurement
A newer and more clear version of TestSummary.java.
ClassicalTestSummary(ArrayList<VariableAttributes>, boolean, boolean, boolean, int[]) - Constructor for class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
 
clear() - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.QNInfo
 
clear() - Method in class com.itemanalysis.psychometrics.scaling.PercentileRank
 
clear() - Method in class com.itemanalysis.psychometrics.statistics.StorelessDescriptiveStatistics
 
clear() - Method in class com.itemanalysis.psychometrics.statistics.TwoWayTable
 
clearCategory() - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
 
clearCategory() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
 
clearCategory() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
clearCounts() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
Resets the item counts to zero.
clearCounts() - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
Resets the category counts.
clearResponseVector() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
Resets the response vector and frequency counts to zero.
clone() - Method in class com.itemanalysis.psychometrics.histogram.Bin
 
CmhTable - Class in com.itemanalysis.psychometrics.cmh
A single 2 x C table for computing Cochran-Mantel-Haenszel DIF statistics.
CmhTable(Object, Object) - Constructor for class com.itemanalysis.psychometrics.cmh.CmhTable
 
CmhTableRow - Class in com.itemanalysis.psychometrics.cmh
 
CmhTableRow(Object) - Constructor for class com.itemanalysis.psychometrics.cmh.CmhTableRow
 
CochranMantelHaenszel - Class in com.itemanalysis.psychometrics.cmh
See the article below for details: Zwick, R., & Thayer, D.
CochranMantelHaenszel(String, String, VariableAttributes, VariableAttributes, boolean) - Constructor for class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
 
cochranMantelHaenszel() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
 
CoefficientAlpha - Class in com.itemanalysis.psychometrics.reliability
Computes Coefficient alpha (aka Cronbach's alpha).
CoefficientAlpha(CovarianceMatrix) - Constructor for class com.itemanalysis.psychometrics.reliability.CoefficientAlpha
Constructor for coefficient alpha.
CoefficientAlpha(double[][]) - Constructor for class com.itemanalysis.psychometrics.reliability.CoefficientAlpha
 
colaxpy_f77(int, double, double[][], int, int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method multiplies a constant times a portion of a column of a matrix and adds the product to the corresponding portion of another column of the matrix --- a portion of col2 is replaced by the corresponding portion of a*col1 + col2.
coldot_f77(int, double[][], int, int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method calculates the dot product of portions of two columns of a matrix.
colisamax_f77(int, double[][], int, int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method finds the index of the element of a portion of a column of a matrix that has the maximum absolute value.
colnrm2_f77(int, double[][], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method calculates the Euclidean norm of a portion of a column of a matrix.
colrot_f77(int, double[][], int, int, double, double) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method "applies a plane rotation." It is a modification of the LINPACK function DROT.
colscal_f77(int, double, double[][], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method scales a portion of a column of a matrix by a constant.
colswap_f77(int, double[][], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method interchanges two columns of a matrix.
columnSum(int) - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
columnThresholds - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
colValuesIterator() - Method in class com.itemanalysis.psychometrics.statistics.TwoWayTable
 
colvaxpy_f77(int, double, double[][], double[], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method multiplies a constant times a portion of a column of a matrix x[ ][ ] and adds the product to the corresponding portion of a vector y[ ] --- a portion of y[ ] is replaced by the corresponding portion of ax[ ][j] + y[ ].
colvdot_f77(int, double[][], double[], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method calculates the dot product of a portion of a column of a matrix and the corresponding portion of a vector.
colvraxpy_f77(int, double, double[], double[][], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method multiplies a constant times a portion of a vector y[ ] and adds the product to the corresponding portion of a column of a matrix x[ ][ ] --- a portion of column j of x[ ][ ] is replaced by the corresponding portion of ay[ ] + x[ ][j].
com.itemanalysis.psychometrics.analysis - package com.itemanalysis.psychometrics.analysis
 
com.itemanalysis.psychometrics.cmh - package com.itemanalysis.psychometrics.cmh
 
com.itemanalysis.psychometrics.data - package com.itemanalysis.psychometrics.data
 
com.itemanalysis.psychometrics.distribution - package com.itemanalysis.psychometrics.distribution
 
com.itemanalysis.psychometrics.factoranalysis - package com.itemanalysis.psychometrics.factoranalysis
 
com.itemanalysis.psychometrics.histogram - package com.itemanalysis.psychometrics.histogram
 
com.itemanalysis.psychometrics.irt.equating - package com.itemanalysis.psychometrics.irt.equating
 
com.itemanalysis.psychometrics.irt.estimation - package com.itemanalysis.psychometrics.irt.estimation
 
com.itemanalysis.psychometrics.irt.model - package com.itemanalysis.psychometrics.irt.model
 
com.itemanalysis.psychometrics.kernel - package com.itemanalysis.psychometrics.kernel
 
com.itemanalysis.psychometrics.measurement - package com.itemanalysis.psychometrics.measurement
 
com.itemanalysis.psychometrics.mixture - package com.itemanalysis.psychometrics.mixture
 
com.itemanalysis.psychometrics.optimization - package com.itemanalysis.psychometrics.optimization
 
com.itemanalysis.psychometrics.polycor - package com.itemanalysis.psychometrics.polycor
 
com.itemanalysis.psychometrics.reliability - package com.itemanalysis.psychometrics.reliability
 
com.itemanalysis.psychometrics.scaling - package com.itemanalysis.psychometrics.scaling
 
com.itemanalysis.psychometrics.statistics - package com.itemanalysis.psychometrics.statistics
 
com.itemanalysis.psychometrics.texttable - package com.itemanalysis.psychometrics.texttable
 
com.itemanalysis.psychometrics.tools - package com.itemanalysis.psychometrics.tools
 
com.itemanalysis.psychometrics.uncmin - package com.itemanalysis.psychometrics.uncmin
 
commonOddsRatio() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
Computed only for the first two rows and first two columns in each strata
commonOddsRatioConfidenceInterval(double) - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
Computes 95% confidence interval for the common odds ratio.
commonOddsRatioDenominator() - Method in class com.itemanalysis.psychometrics.cmh.CmhTable
 
commonOddsRatioNumerator() - Method in class com.itemanalysis.psychometrics.cmh.CmhTable
 
commonOddsRatioVariance() - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
 
communality - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
 
compare(Object, Object) - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring.ItemResponseComparator
 
compareTo(Object) - Method in class com.itemanalysis.psychometrics.data.Category
 
compareTo(VariableAttributes) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
compare by item name.
compareTo(Object) - Method in class com.itemanalysis.psychometrics.data.VariableLabel
 
compareTo(VariableName) - Method in class com.itemanalysis.psychometrics.data.VariableName
 
compareTo(ItemResponseVector) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
 
compareTo(Covariance) - Method in class com.itemanalysis.psychometrics.polycor.Covariance
 
compareTo(PearsonCorrelation) - Method in class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
 
compareTo(ScoreReliability) - Method in class com.itemanalysis.psychometrics.reliability.AbstractScoreReliability
 
compareTo(ConditionalSEM) - Method in class com.itemanalysis.psychometrics.reliability.ConditionalSEM
 
compareTo(CSEM) - Method in class com.itemanalysis.psychometrics.reliability.CSEM
 
compareTo(Object) - Method in class com.itemanalysis.psychometrics.scaling.RawScore
 
completeDataLogLikelihood() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
Computes the complete data log-likelihood.
ComponentDistribution - Interface in com.itemanalysis.psychometrics.mixture
 
compute() - Method in class com.itemanalysis.psychometrics.irt.estimation.EstepParallel
Recusive computation of the Estep for parallel processing.
compute() - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtObservedScoreDistribution
Computes the IRT observed score distribution for a test that contains binary items, polytomous items, or binary and polytomous items.
compute() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitG2
 
compute() - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemFitStatistic
 
compute() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitSX2
 
compute() - Method in class com.itemanalysis.psychometrics.irt.estimation.MstepParallel
Parallel processing handled here.
computeAllBinaryItems() - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtObservedScoreDistribution
Computes the IRT observed score distribution for a test that contains only binary items.
computeCategoryScore(Object, Object) - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
Returns 1 if response == categoryId and 0 otherwise.
computeCategoryScore(Object, Object) - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
computeCategoryStandardError(double[], int[]) - Method in class com.itemanalysis.psychometrics.irt.model.RaschRatingScaleGroup
Computes the standard error of the threshold parameters.
computeCoefficients() - Method in class com.itemanalysis.psychometrics.irt.equating.IrtScaleLinking
 
computeCSEM(ScoreReliability, boolean) - Method in class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
 
computeCSEM(ScoreReliability, boolean) - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
 
computeDecisionConsistency() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
 
computeDecisionConsistency() - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
 
computeDirectly() - Method in class com.itemanalysis.psychometrics.irt.estimation.EstepParallel
Estep computation when the number of response vectors is less than estepParallelThreshold or when the recursive algorithm has reached its stopping condition.
computeDirectly() - Method in class com.itemanalysis.psychometrics.irt.estimation.MstepParallel
Mstep computation when the number of items is less than the threshold or when the stopping condition has been reached.
computeEpsilon() - Static method in class com.itemanalysis.psychometrics.measurement.MachineAccuracy
compute EPSILON from scratch
computeG2ItemFit(int, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
computeItemCategoryFitStatistics() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
After estimation, INFIT and OUTFIT mean square fit statistics for category thresholds can be computed.
computeItemFitStatistics() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
After parameters have been estimated, fit statistics can be computed.
computeItemScore(String) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
First checks for missing data.
computeItemScore(double) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
 
computeItemScore(int) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
 
computeItemScore(Object) - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
Missing responses, omitted responses, and not reached responses are scored according to the value in the SepcialDataCodes object.
computeItemScore(Object) - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
computeItemStandardErrors() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
Item difficulty standard error calculation.
computeItemStandardErrors() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
computeMaximumPossibleTestScore() - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
 
computeMissingScore(String) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
Computes the score associated with a missing data code.
computeMissingScore(Object) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
 
computeMissingScore(double) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
 
computeMissingScore(int) - Method in class com.itemanalysis.psychometrics.data.SpecialDataCodes
 
computePersonStandardErrors() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
Person ability parameter standard error calculation.
computePersonStandardErrors() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScoreTable
Person ability parameter standard error calculation.
computeRaschItemFit() - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
computeScoreVector(Object) - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
Creates an array of category keys and their corresponding score for the response.
computeStartingValues() - Method in class com.itemanalysis.psychometrics.irt.estimation.StartingValues
The public method for computing start values.
computeSX2ItemFit(int) - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
computeValues(RealMatrix) - Method in class com.itemanalysis.psychometrics.factoranalysis.GeominCriteria
 
computeValues(RealMatrix) - Method in class com.itemanalysis.psychometrics.factoranalysis.ObliminCriteria
 
computeValues(RealMatrix) - Method in class com.itemanalysis.psychometrics.factoranalysis.QuartiminCriteria
 
computeValues(RealMatrix) - Method in interface com.itemanalysis.psychometrics.factoranalysis.RotationCriteria
 
computeValues(RealMatrix) - Method in class com.itemanalysis.psychometrics.factoranalysis.VarimaxCriteria
Computes the function value for varimax rotation.
condenseTable() - Method in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
 
condenseTable() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemFitSX2
 
ConditionalNumericItemResponseSummary - Class in com.itemanalysis.psychometrics.measurement
A class for summarizing item responses conditional on a test score.
ConditionalNumericItemResponseSummary(VariableName) - Constructor for class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
 
ConditionalSEM - Class in com.itemanalysis.psychometrics.reliability
 
ConditionalSEM(Integer[], double, ScoreReliability, KR21, boolean) - Constructor for class com.itemanalysis.psychometrics.reliability.ConditionalSEM
 
ConditionalTextItemResponseSummary - Class in com.itemanalysis.psychometrics.measurement
Item response summary conditional on a test score.
ConditionalTextItemResponseSummary(VariableName) - Constructor for class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
 
confidenceInterval() - Method in class com.itemanalysis.psychometrics.reliability.AbstractScoreReliability
This confidence interval applies to Coefficient alpha because it has a known sampling distribution.
confidenceInterval() - Method in class com.itemanalysis.psychometrics.reliability.ReliabilityInterval
 
confidenceInterval() - Method in interface com.itemanalysis.psychometrics.reliability.ScoreReliability
Confidence interval for the reliability estimate computed using the F-distribution.
confidenceIntervalToString(double[]) - Method in class com.itemanalysis.psychometrics.reliability.AbstractScoreReliability
 
confidenceIntervalToString(double[]) - Method in interface com.itemanalysis.psychometrics.reliability.ScoreReliability
Creates a String representation of the confidence interval.
contains(int[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
containsInSubarray(int[], int, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
ContinuousDistributionApproximation - Class in com.itemanalysis.psychometrics.distribution
A class that provides a discrete approximation of a univariate continuous probability distribution.
ContinuousDistributionApproximation(int, double, double) - Constructor for class com.itemanalysis.psychometrics.distribution.ContinuousDistributionApproximation
Constructor for using starting values from a uniform distribution.
ContinuousDistributionApproximation(int, double, double, double, double) - Constructor for class com.itemanalysis.psychometrics.distribution.ContinuousDistributionApproximation
Constructor for using starting values from a normal distribution.
ContinuousDistributionApproximation(double[], double[]) - Constructor for class com.itemanalysis.psychometrics.distribution.ContinuousDistributionApproximation
Construct the object using the supplied arrays of points and weights.
converged() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
copyOf(double[], int) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Simulate Arrays.copyOf method provided by Java 6 When/if the JavaNLP-core code base moves past Java 5, this method can be removed
correctedValue() - Method in class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
Correct correlation for spuriousness.
correlation() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
 
correlation() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
 
correlation() - Method in class com.itemanalysis.psychometrics.polycor.Covariance
 
correlation() - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
correlationPvalue() - Method in class com.itemanalysis.psychometrics.polycor.Covariance
 
correlationStandardError() - Method in class com.itemanalysis.psychometrics.polycor.Covariance
 
CosineKernel - Class in com.itemanalysis.psychometrics.kernel
 
CosineKernel() - Constructor for class com.itemanalysis.psychometrics.kernel.CosineKernel
 
count(Object, Double) - Method in class com.itemanalysis.psychometrics.cmh.CmhTableRow
 
countCloseToZero(double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
countInfinite(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
countNaN(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
countNegative(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
countNonZero(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
countPositive(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
covariance(double[][]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
Covariance - Class in com.itemanalysis.psychometrics.polycor
 
Covariance(boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.Covariance
 
Covariance() - Constructor for class com.itemanalysis.psychometrics.polycor.Covariance
 
Covariance(double, boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.Covariance
 
Covariance(double) - Constructor for class com.itemanalysis.psychometrics.polycor.Covariance
 
Covariance(Covariance, boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.Covariance
 
Covariance(Covariance) - Constructor for class com.itemanalysis.psychometrics.polycor.Covariance
 
CovarianceMatrix - Class in com.itemanalysis.psychometrics.polycor
Computes NxN covariance and correlation matrix.
CovarianceMatrix(double[][], boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
Input is a two-array of doubles.
CovarianceMatrix(double[][]) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
CovarianceMatrix(ArrayList<VariableAttributes>, boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
CovarianceMatrix(ArrayList<VariableAttributes>) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
CovarianceMatrix(LinkedHashMap<VariableName, VariableAttributes>, boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
CovarianceMatrix(LinkedHashMap<VariableName, VariableAttributes>) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
CovarianceMatrix(int, boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
This constructor is primarily used in the TestSummary.java class.
CovarianceMatrix(int) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
CovarianceMatrix(Covariance[][], ArrayList<VariableAttributes>, boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
CovarianceMatrix(Covariance[][], ArrayList<VariableAttributes>) - Constructor for class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
covarianceSum() - Method in class com.itemanalysis.psychometrics.polycor.CovarianceMatrix
 
createLookupTable(PercentileRank, LinearTransformation) - Method in class com.itemanalysis.psychometrics.scaling.NormalizedScore
Creates a TreeMap lookup table of normalized scores.
createLookupTable() - Method in class com.itemanalysis.psychometrics.scaling.PercentileRank
Creates a TreeMap lookup table of percentile ranks.
CSEM - Class in com.itemanalysis.psychometrics.reliability
 
CSEM(double, double, double, double) - Constructor for class com.itemanalysis.psychometrics.reliability.CSEM
 
CSEMList - Class in com.itemanalysis.psychometrics.reliability
 
CSEMList(double, double, double) - Constructor for class com.itemanalysis.psychometrics.reliability.CSEMList
 
cumulativeColumnSums() - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
cumulativeProbability(double[], double[], double[][]) - Method in class com.itemanalysis.psychometrics.distribution.BivariateNormalDistributionImpl
A function for computing bivariate normal probabilities.
cumulativeProbability(double[], double[], int[], double) - Method in class com.itemanalysis.psychometrics.distribution.BivariateNormalDistributionImpl
A function for computing bivariate normal probabilities.
cumulativeProbability(double[], double[], double) - Method in class com.itemanalysis.psychometrics.distribution.BivariateNormalDistributionImpl
A function for computing bivariate normal probabilities.
cumulativeProbability(double, double, double) - Method in class com.itemanalysis.psychometrics.distribution.BivariateNormalDistributionImpl
A function for computing bivariate normal probabilities.
cumulativeProbability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
Not implemented.
cumulativeProbability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
Not implemented.
cumulativeProbability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
Not implemented.
cumulativeProbability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
Not implemented.
cumulativeProbability(double, double[], int, double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
 
cumulativeProbability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
Compute cumulative probability of scoring at or above category.
cumulativeProbability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
Not implemented.
cumulativeProbability(double, int) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
Not implemented.
cumulativeProbability(double, int) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
Mainly here for the graded response model
cumulativeRowSums() - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
Cut - Class in com.itemanalysis.psychometrics.histogram
Cuts a continuous variable into numberOfBins intervals that range from min to max.
Cut(double, double, int, boolean) - Constructor for class com.itemanalysis.psychometrics.histogram.Cut
 
Cut(double, double, int) - Constructor for class com.itemanalysis.psychometrics.histogram.Cut
 
cvSum(double) - Method in class com.itemanalysis.psychometrics.kernel.LeastSquaresCrossValidation
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links