public interface ItemLogLikelihoodFunction extends DiffFunction, Uncmin_methods
Modifier and Type | Method and Description |
---|---|
double[] |
derivativeAt(double[] point)
Computes gradientAt of item likelihood function at item parameter values.
|
int |
domainDimension()
For DiffFunction interface.
|
double |
f_to_minimize(double[] x)
Computes the loglikelihood value for an item.
|
void |
gradient(double[] x,
double[] g)
Computes the gradientAt of the loglikelihood function for an item.
|
void |
hessian(double[] x,
double[][] a)
Computes the Hessian of the loglikelihood function for an item.
|
double |
logLikelihood()
Item loglikelihood function.
|
void |
setModel(ItemResponseModel model,
DistributionApproximation latentDistribution,
EstepItemEstimates r,
double[] nk) |
double |
valueAt(double[] point)
Computes the loglikelihood value for an item.
|
void setModel(ItemResponseModel model, DistributionApproximation latentDistribution, EstepItemEstimates r, double[] nk)
double logLikelihood()
int domainDimension()
domainDimension
in interface Function
double valueAt(double[] point)
double[] derivativeAt(double[] point)
derivativeAt
in interface DiffFunction
point
- item parameter values.double f_to_minimize(double[] x)
f_to_minimize
in interface Uncmin_methods
x
- input array of item parameters that begins at 1. You must create a new array that begins at 0
and then call valueAt(double[] point) to get the value.void gradient(double[] x, double[] g)
gradient
in interface Uncmin_methods
x
- input array of item parameters that begins at 1. You must create a new array that begins
at 0 and then call derivativeAt(double[] point) to get the gradientAt.g
- gradientAt at x.void hessian(double[] x, double[][] a)
hessian
in interface Uncmin_methods
x
- input array of item parameters that begins at 1. You must create a new array that begins
at 0 and then call derivativeAt(double[] point) to get the gradientAt.a
- Hessian at x.