Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

M

MachineAccuracy - Class in com.itemanalysis.psychometrics.measurement
determines machine accuracy
MachineAccuracy() - Constructor for class com.itemanalysis.psychometrics.measurement.MachineAccuracy
 
machineEpsilon() - Method in class com.itemanalysis.psychometrics.analysis.AbstractDiffFunction
 
machineEpsilon() - Method in class com.itemanalysis.psychometrics.analysis.AbstractMultivariateFunction
 
main(String[]) - Static method in class com.itemanalysis.psychometrics.irt.estimation.MMLEsimulation
 
main(String[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
For testing only.
main(String[]) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Tests the hypergeometric distribution code, or other functions provided in this module.
mapEstimate(double, double, double, double, int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
Maximum a Posteriori (MAP) estimate of examinee ability using a normal prior distribution.
mapEstimate(double, double, double, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
 
mapStandardErrorAt(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
 
MarginalMaximumLikelihoodEstimation - Class in com.itemanalysis.psychometrics.irt.estimation
Marginal maximum likelihood estimation (MMLE) for item parameters in Item Response Theory (IRT).
MarginalMaximumLikelihoodEstimation(ItemResponseVector[], ItemResponseModel[], DistributionApproximation) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
 
matmat_f77(double[][], double[][], double[][], int, int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method multiplies an n x p matrix by a p x r matrix.
matrix - Variable in class com.itemanalysis.psychometrics.reliability.AbstractScoreReliability
 
MatrixToVector - Class in com.itemanalysis.psychometrics.statistics
 
MatrixToVector(RealMatrix) - Constructor for class com.itemanalysis.psychometrics.statistics.MatrixToVector
 
MatrixUtils - Class in com.itemanalysis.psychometrics.factoranalysis
 
MatrixUtils() - Constructor for class com.itemanalysis.psychometrics.factoranalysis.MatrixUtils
 
mattran_f77(double[][], double[][], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method obtains the transpose of an n x p matrix.
matvec_f77(double[][], double[], double[], int, int) - Static method in class com.itemanalysis.psychometrics.uncmin.Blas_f77
This method multiplies an n x p matrix by a p x 1 vector.
max - Variable in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
 
max - Variable in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
Largest observe value.
max() - Method in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
Gets the largest observed data point.
max(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
max(Collection<Double>) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
max(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
max(int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
max(int[][]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Returns the smallest element of the matrix
max(int, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
max() that works on three integers.
max(Collection<Integer>) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
 
max(int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the greater of two int values.
max(float, float) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the greater of two float values.
max(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the greater of two double values.
maxCategory - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
 
maxCategory - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
 
maximumLikelihoodEstimate(double, double, int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
Maximum likelihood estimate (MLE) of examinee ability.
maximumLikelihoodEstimate(double, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
 
MaximumLikelihoodFunction() - Constructor for class com.itemanalysis.psychometrics.polycor.PolychoricMaximumLikelihood.MaximumLikelihoodFunction
 
MaximumLikelihoodMethod - Class in com.itemanalysis.psychometrics.factoranalysis
Exploratory factor analysis by maximum likelihood estimation.
MaximumLikelihoodMethod(RealMatrix, int, RotationMethod) - Constructor for class com.itemanalysis.psychometrics.factoranalysis.MaximumLikelihoodMethod
 
maximumPossibleScore() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
 
maximumPossibleScore() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
maxPossibleScore - Variable in class com.itemanalysis.psychometrics.scaling.ScoreBounds
 
maxSip() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
Maximum possible raw item score
maxWeight - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
 
maxWeight - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
 
mean() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalNumericItemResponseSummary
 
mean() - Method in class com.itemanalysis.psychometrics.measurement.ConditionalTextItemResponseSummary
 
mean() - Method in class com.itemanalysis.psychometrics.measurement.TextItemResponseSummary
Computes a weighted sample mean.
mean(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
meanDifference() - Method in class com.itemanalysis.psychometrics.cmh.CmhTable
Table calculation for standardized p-dif
MeanMeanMethod - Class in com.itemanalysis.psychometrics.irt.equating
 
MeanMeanMethod(LinkedHashMap<String, ItemResponseModel>, LinkedHashMap<String, ItemResponseModel>) - Constructor for class com.itemanalysis.psychometrics.irt.equating.MeanMeanMethod
 
MeanSigmaMethod - Class in com.itemanalysis.psychometrics.irt.equating
 
MeanSigmaMethod(LinkedHashMap<String, ItemResponseModel>, LinkedHashMap<String, ItemResponseModel>, boolean) - Constructor for class com.itemanalysis.psychometrics.irt.equating.MeanSigmaMethod
 
meanSquareError() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScaleQualityStatistics
Mean square error of the estimate.
meanValue() - Method in class com.itemanalysis.psychometrics.scaling.RawScore
 
median(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
min - Variable in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
 
min - Variable in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
Smallest observed value.
min() - Method in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
Gets the smallest observed data points.
min(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
min(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
min(int[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
min(int[][]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Returns the smallest element of the matrix
min(int, int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the minimum of three int values.
min(float, float) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the smaller of two float values.
min(double, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Returns the smaller of two double values.
minCategory - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
 
minCategory - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
 
minExpectedCellCount - Variable in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
 
minimize(DiffFunction, double, double[]) - Method in class com.itemanalysis.psychometrics.optimization.CGMinimizer
 
minimize(DiffFunction, double, double[], int) - Method in class com.itemanalysis.psychometrics.optimization.CGMinimizer
 
minimize(T, double, double[]) - Method in interface com.itemanalysis.psychometrics.optimization.Minimizer
Attempts to find an unconstrained minimum of the objective function starting at initial, within functionTolerance.
minimize(T, double, double[], int) - Method in interface com.itemanalysis.psychometrics.optimization.Minimizer
 
minimize(DiffFloatFunction, float, float[]) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
 
minimize(DiffFunction, double, double[]) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
 
minimize(DiffFunction, double, double[], int) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
 
minimize(DiffFunction, double, double[], int, QNMinimizer.QNInfo) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer
 
minimize(Uncmin_methods, double[]) - Method in class com.itemanalysis.psychometrics.uncmin.DefaultUncminOptimizer
This wrapper will use the same configuration as Uncmin_f77.optif0_f77.
minimize(Uncmin_methods, double[], boolean, boolean, int, double) - Method in class com.itemanalysis.psychometrics.uncmin.DefaultUncminOptimizer
Wrapper for calling in Uncmin_f77.optif9_f77.
Minimizer<T extends Function> - Interface in com.itemanalysis.psychometrics.optimization
The interface for unconstrained function minimizers.
MINIMUM_PROBLEM_DIMENSION - Static variable in class com.itemanalysis.psychometrics.optimization.BOBYQAOptimizer
Minimum dimension of the problem: 2
minimumPossibleScore() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
 
minimumPossibleScore() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
minPossibleScore - Variable in class com.itemanalysis.psychometrics.scaling.ScoreBounds
 
MINRESmethod - Class in com.itemanalysis.psychometrics.factoranalysis
Harman's minimum residual (MINRES) method of factor analysis.
MINRESmethod(RealMatrix, int, RotationMethod) - Constructor for class com.itemanalysis.psychometrics.factoranalysis.MINRESmethod
 
minSip() - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseSummary
Minimum possible raw item score
minWeight - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
 
minWeight - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
 
missingResponseAt(int) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
 
MixedCorrelationMatrix - Class in com.itemanalysis.psychometrics.polycor
 
MixedCorrelationMatrix(ArrayList<VariableAttributes>, boolean) - Constructor for class com.itemanalysis.psychometrics.polycor.MixedCorrelationMatrix
 
MixedCorrelationMatrix.CorrelationType - Enum in com.itemanalysis.psychometrics.polycor
 
MixtureModel - Interface in com.itemanalysis.psychometrics.mixture
 
mleStandardErrorAt(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
 
MMLEsimulation - Class in com.itemanalysis.psychometrics.irt.estimation
 
MMLEsimulation() - Constructor for class com.itemanalysis.psychometrics.irt.estimation.MMLEsimulation
 
monitorX(double[]) - Method in class com.itemanalysis.psychometrics.optimization.QNMinimizer.Record
 
mStep() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
 
mStep() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
MstepParallel - Class in com.itemanalysis.psychometrics.irt.estimation
Mstep of the EM algorithm for estimating item parameters in Item Response Theory.
MstepParallel(ItemResponseModel[], DistributionApproximation, EstepEstimates, DensityEstimationType, int, int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.MstepParallel
 
multipleRandomStarts() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
 
multipleRandomStarts() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
multiply(double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Scales the values in this array by c.
multiply(float[], float) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Scales the values in this array by c.
multiplyElements(RealMatrix, RealMatrix) - Static method in class com.itemanalysis.psychometrics.factoranalysis.MatrixUtils
Elementwise multiplication of elements in two arrays.
multiplyElementsBy(RealMatrix, RealMatrix) - Static method in class com.itemanalysis.psychometrics.factoranalysis.MatrixUtils
Elementwise multiplication of two matrices.
multiplyInPlace(double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Scales the values in this array by b.
multiplyInPlace(float[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Scales the values in this array by b.
multiplyInto(double[], double[], double) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
mvmltl_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
The mvmltl_f77 method computes y = Lx where L is a lower triangular matrix stored in A.
mvmltl_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
The mvmltl_f77 method computes y = Lx where L is a lower triangular matrix stored in A.
mvmlts_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
The mvmlts_f77 method computes y = Ax where A is a symmetric matrix stored in its lower triangular part.
mvmlts_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
The mvmlts_f77 method computes y = Ax where A is a symmetric matrix stored in its lower triangular part.
mvmltu_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin
The mvmltu_f77 method computes Y = (L transpose)X where L is a lower triangular matrix stored in A (L transpose is taken implicitly).
mvmltu_f77(int, double[][], double[], double[]) - Method in class com.itemanalysis.psychometrics.uncmin.Uncmin_f77
The mvmltu_f77 method computes Y = (L transpose)X where L is a lower triangular matrix stored in A (L transpose is taken implicitly).
MvNormalComponentDistribution - Class in com.itemanalysis.psychometrics.mixture
 
MvNormalComponentDistribution(int) - Constructor for class com.itemanalysis.psychometrics.mixture.MvNormalComponentDistribution
 
MvNormalMixtureModel - Class in com.itemanalysis.psychometrics.mixture
 
MvNormalMixtureModel(RealMatrix, int) - Constructor for class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links