public class ContinuousDistributionApproximation extends AbstractDistributionApproximation
max, min, normal, numberOfPoints, points, range, step, weights
Constructor and Description |
---|
ContinuousDistributionApproximation(double[] points,
double[] weights)
Construct the object using the supplied arrays of points and weights.
|
ContinuousDistributionApproximation(int numberOfPoints,
double min,
double max)
Constructor for using starting values from a uniform distribution.
|
ContinuousDistributionApproximation(int numberOfPoints,
double min,
double max,
double mean,
double standardDeviation)
Constructor for using starting values from a normal distribution.
|
Modifier and Type | Method and Description |
---|---|
void |
setDensityAt(int index,
double value) |
void |
setPointAt(int index,
double value) |
java.lang.String |
toString() |
evaluate, getDensityAt, getMaximum, getMean, getMinimum, getNumberOfPoints, getPointAt, getPoints, getStandardDeviation, getVariance, setNormalPointsAndWeights, setUniformPointsAndWeights, standardize
public ContinuousDistributionApproximation(int numberOfPoints, double min, double max)
numberOfPoints
- number of qudrature pointsmin
- minimum quadrature pointmax
- maximum qudrature pointpublic ContinuousDistributionApproximation(int numberOfPoints, double min, double max, double mean, double standardDeviation)
numberOfPoints
- number of qudrature pointsmin
- minimum quadrature pointmax
- maximum qudrature pointmean
- mean of normal distribution for starting values.standardDeviation
- standard deviation of normal distribution for starting values.public ContinuousDistributionApproximation(double[] points, double[] weights)
points
- discrete real pointsweights
- weights for the points