Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

E

eapEstimate(double, double, double, double, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
Expected a Posteriori (EAP) estimate of examinee ability using a normal distribution.
eapEstimate(DistributionApproximation) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
EAP estimate using a distribution provided by the user such as quadrature points and weights from item calibration.
eapStandardErrorAt(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.IrtExaminee
Computes standard error for EAP method.
empiricalHistogramLatentDensityEstimation() - Method in class com.itemanalysis.psychometrics.irt.estimation.MstepParallel
Nonparametric estimation (empirical histogram method) of the latent density.
EMStatusEventObject - Class in com.itemanalysis.psychometrics.irt.estimation
 
EMStatusEventObject(Object) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EMStatusEventObject
 
EMStatusEventObject(Object, String) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EMStatusEventObject
 
EMStatusEventObject(Object, String, int, double, double, String) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EMStatusEventObject
Used for EM and start value cycle information
EMStatusEventObject(Object, String, int, double, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EMStatusEventObject
 
EMStatusEventObject(Object, int, double, double) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EMStatusEventObject
Use for EM cycle information only
EMStatusEventObject(Object, int, double, double, String) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EMStatusEventObject
 
EMStatusListener - Interface in com.itemanalysis.psychometrics.irt.estimation
 
entropy() - Method in class com.itemanalysis.psychometrics.mixture.InformationFitCriteria
 
entropy(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
EpanechnikovKernel - Class in com.itemanalysis.psychometrics.kernel
 
EpanechnikovKernel() - Constructor for class com.itemanalysis.psychometrics.kernel.EpanechnikovKernel
 
EPSILON - Static variable in class com.itemanalysis.psychometrics.measurement.MachineAccuracy
machine accuracy constant
equals(Object) - Method in class com.itemanalysis.psychometrics.data.Category
 
equals(Object) - Method in class com.itemanalysis.psychometrics.data.VariableAttributes
 
equals(Object) - Method in class com.itemanalysis.psychometrics.data.VariableLabel
 
equals(Object) - Method in class com.itemanalysis.psychometrics.data.VariableName
 
equals(Object) - Method in class com.itemanalysis.psychometrics.data.VariableType
 
equals(Object) - Method in class com.itemanalysis.psychometrics.histogram.Bin
Evaluates the equality of of two bins.
equals(Object) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
 
equals(Object) - Method in class com.itemanalysis.psychometrics.polycor.Covariance
 
equals(Object) - Method in class com.itemanalysis.psychometrics.polycor.PearsonCorrelation
 
equals(Object) - Method in class com.itemanalysis.psychometrics.reliability.AbstractScoreReliability
 
equals(Object) - Method in class com.itemanalysis.psychometrics.reliability.ConditionalSEM
 
equals(Object) - Method in class com.itemanalysis.psychometrics.reliability.CSEM
 
equals(Object) - Method in class com.itemanalysis.psychometrics.scaling.RawScore
 
equateScores() - Method in class com.itemanalysis.psychometrics.irt.equating.IrtTrueScoreEquating
Primary method for conducting the IRT true score equating.
EquatingCriterionType - Enum in com.itemanalysis.psychometrics.irt.equating
 
EstepEstimates - Class in com.itemanalysis.psychometrics.irt.estimation
 
EstepEstimates(int, int[], int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EstepEstimates
 
EstepItemEstimates - Class in com.itemanalysis.psychometrics.irt.estimation
Stores the count of the expected number of responses to category k for item j.
EstepItemEstimates(int, int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EstepItemEstimates
 
EstepParallel - Class in com.itemanalysis.psychometrics.irt.estimation
Estep of the EM algorithm for estimating item parameters in MMLE.
EstepParallel(ItemResponseVector[], ItemResponseModel[], DistributionApproximation, int, int) - Constructor for class com.itemanalysis.psychometrics.irt.estimation.EstepParallel
Default constructor may be called recursively for parallel computations.
estimateCov(RealMatrix) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
estimateMean(RealMatrix) - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
estimateParameters(EstimationMethod, RotationMethod) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
The main method for estimating parameters.
estimateParameters(EstimationMethod) - Method in class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
 
estimateParameters() - Method in interface com.itemanalysis.psychometrics.factoranalysis.FactorMethod
A method for estimating parameters.
estimateParameters() - Method in class com.itemanalysis.psychometrics.factoranalysis.GeneralizedLeastSquaresMethod
 
estimateParameters() - Method in class com.itemanalysis.psychometrics.factoranalysis.MaximumLikelihoodMethod
 
estimateParameters() - Method in class com.itemanalysis.psychometrics.factoranalysis.MINRESmethod
 
estimateParameters() - Method in class com.itemanalysis.psychometrics.factoranalysis.PrincipalComponentsMethod
 
estimateParameters() - Method in class com.itemanalysis.psychometrics.factoranalysis.WeightedLeastSquaresMethod
 
estimateParameters(int, double) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
A shortcut method that only requires input for the maximum number of global iterations and the global convergence criterion.
estimateParameters(int, double, boolean) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
A shortcut method that only requires input for the maximum number of global iterations and the global convergence criterion.
estimateParameters(int, double, int, double, boolean) - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
This method is where the estimation is managed.
estimateParameters(double, int) - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
Estimate parameters using the specified convergence criterion and maximum number of iterations.
estimateParameters(double, int, DensityEstimationType) - Method in class com.itemanalysis.psychometrics.irt.estimation.MarginalMaximumLikelihoodEstimation
The EM algorithm for estimating item parameters is conducted with this method.
EstimationMethod - Enum in com.itemanalysis.psychometrics.factoranalysis
 
EstimationMethod - Enum in com.itemanalysis.psychometrics.irt.estimation
 
etsBinayClassification(double, double, double) - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
 
etsDelta(double) - Method in class com.itemanalysis.psychometrics.cmh.CochranMantelHaenszel
 
evaluate() - Method in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
 
evaluate() - Method in interface com.itemanalysis.psychometrics.distribution.DistributionApproximation
Gets and array of density values.
evaluate(double[]) - Method in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
 
evaluate() - Method in class com.itemanalysis.psychometrics.histogram.Histogram
Gets an array of value values.
evaluate(double[]) - Method in class com.itemanalysis.psychometrics.histogram.Histogram
 
evaluate() - Method in class com.itemanalysis.psychometrics.kernel.KernelDensity
Call this method when using the incremental update to the density estimator.
evaluate(double[]) - Method in class com.itemanalysis.psychometrics.kernel.KernelDensity
Call tihs method when not using the incremental update.
evaluate(double[], int) - Method in class com.itemanalysis.psychometrics.kernel.KernelDensity
Leave one out kernel evaluate estimate.
evaluate(double[], double[]) - Method in class com.itemanalysis.psychometrics.kernel.LocalLinearRegression
 
evaluate(double[], byte[]) - Method in class com.itemanalysis.psychometrics.kernel.LocalLinearRegression
 
evaluate(double[]) - Method in interface com.itemanalysis.psychometrics.optimization.Evaluator
 
evaluate(PercentileRank, DefaultLinearTransformation) - Method in class com.itemanalysis.psychometrics.scaling.NormalizedScore
For r number of score levels between min and max (as defined in PercentileRank), inclusive, this method returns a r x 2 array with integer based scores in first column and normalized scores in the second column.
evaluate() - Method in class com.itemanalysis.psychometrics.scaling.PercentileRank
For r number of score levels between min and max, inclusive, this method returns a r x 2 array with integer based scores in first column and percentile ranks in the second column.
evaluate(int[]) - Method in class com.itemanalysis.psychometrics.scaling.PercentileRank
 
evaluate(double[]) - Method in class com.itemanalysis.psychometrics.scaling.PercentileRank
 
evaluate(double[]) - Method in class com.itemanalysis.psychometrics.statistics.Bootstrap
 
Evaluator - Interface in com.itemanalysis.psychometrics.optimization
 
exactBinomial(int, int, double) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Find a one tailed exact binomial test probability.
ExampleMultivariateFunction - Class in com.itemanalysis.psychometrics.analysis
An instantiation of AbstractMultivariateFunction for testing purposes only.
ExampleMultivariateFunction(int) - Constructor for class com.itemanalysis.psychometrics.analysis.ExampleMultivariateFunction
 
exp(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
expectedValue() - Method in class com.itemanalysis.psychometrics.cmh.CmhTable
 
expectedValue(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
Computes the expected value
expectedValue(double) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
Computes the expected value, which is the same as the probability of a correct response.
expectedValue(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
Computes the expected value using parameters stored in the object.
expectedValue(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
computes the expected value using parameters stored in the object
expectedValue(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
 
expectedValue(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
computes the expected value using parameters stored in the object
expectedValue(double) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
Computes the expected value using parameters stored in the object.
expectedValue(double) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
For a binary item, ItemResponseModel.probability(double, int) and the excpected value returned by this method are the same thing.
expectedValues - Variable in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
 
expInPlace(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
ExploratoryFactorAnalysis - Class in com.itemanalysis.psychometrics.factoranalysis
This class is the main entry point for conducting exploratory factor analysis.
ExploratoryFactorAnalysis(RealMatrix, int) - Constructor for class com.itemanalysis.psychometrics.factoranalysis.ExploratoryFactorAnalysis
The constructor requires a correlation matrix and the number of factors.
extractColumnThresholds(double[], boolean) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
extractRho(double[], boolean) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
extractRowThresholds(double[], boolean) - Method in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links