Skip navigation links
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

N

n - Variable in class com.itemanalysis.psychometrics.histogram.AbstractBinCalculation
Sample size.
N - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
N - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolyserialCorrelation
 
name - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
 
name - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
 
nameChanged() - Method in class com.itemanalysis.psychometrics.data.VariableName
 
nameForDatabase() - Method in class com.itemanalysis.psychometrics.data.VariableName
Leading and trailing "x" added for database security and prevent use of reserved words
ncat - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
 
ncat - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModelWithGradient
 
ncatM1 - Variable in class com.itemanalysis.psychometrics.irt.model.AbstractItemResponseModel
 
nChooseK(int, int) - Static method in class com.itemanalysis.psychometrics.optimization.SloppyMath
Computes n choose k in an efficient way.
ncol - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
nearestNonZero(double) - Method in interface com.itemanalysis.psychometrics.irt.estimation.ItemParamPrior
 
nearestNonZero(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta
 
nearestNonZero(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorBeta4
If the density of x is zero then return the point nearest x that has a non-zero density.
nearestNonZero(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorLogNormal
If density of x is zero (x <= 0) then return small slightly greater than zero that has a non-zero density
nearestNonZero(double) - Method in class com.itemanalysis.psychometrics.irt.estimation.ItemParamPriorNormal
Empty method
next() - Method in class com.itemanalysis.psychometrics.irt.model.IrmCollection.GroupModelIterator
 
nFactors - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
 
nItems - Variable in class com.itemanalysis.psychometrics.irt.estimation.ItemResponseVector
Number of items in the response vector
nItems - Variable in class com.itemanalysis.psychometrics.reliability.AbstractScoreReliability
 
NonparametricIccBandwidth - Class in com.itemanalysis.psychometrics.kernel
Bandwidth for nonparametric item characteristic curves via KernelRegression.
NonparametricIccBandwidth(double, double) - Constructor for class com.itemanalysis.psychometrics.kernel.NonparametricIccBandwidth
 
nonZeroPrior(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm3PL
 
nonZeroPrior(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.Irm4PL
 
nonZeroPrior(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM
 
nonZeroPrior(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGPCM2
 
nonZeroPrior(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmGRM
 
nonZeroPrior(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM
 
nonZeroPrior(double[]) - Method in class com.itemanalysis.psychometrics.irt.model.IrmPCM2
 
nonZeroPrior(double[]) - Method in interface com.itemanalysis.psychometrics.irt.model.ItemResponseModel
If the prior density for a parameter is zero, adjust parameter to the nearest non zero value.
norm(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Computes 2-norm of vector.
norm(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Computes 2-norm of vector.
norm - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
norm - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolyserialCorrelation
 
norm_1(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Computes 1-norm of vector.
norm_1(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Computes 1-norm of vector.
norm_inf(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Computes inf-norm of vector.
norm_inf(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Computes inf-norm of vector.
normal - Variable in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
 
NormalDistributionApproximation - Class in com.itemanalysis.psychometrics.distribution
An immutable object for creating evaluation points and associated density values from a normal distribution.
NormalDistributionApproximation(double, double, int) - Constructor for class com.itemanalysis.psychometrics.distribution.NormalDistributionApproximation
Creates a numerical approximation to the standard normal distribution.
NormalDistributionApproximation(double, double, double, double, int) - Constructor for class com.itemanalysis.psychometrics.distribution.NormalDistributionApproximation
Creates a numerical approximation to a normal distribution with the specified mean and standard deviation.
normalize(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Makes the values in this array sum to 1.0.
normalize(float[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
Makes the values in this array sum to 1.0.
NormalizedScore - Class in com.itemanalysis.psychometrics.scaling
 
NormalizedScore() - Constructor for class com.itemanalysis.psychometrics.scaling.NormalizedScore
 
normalizedScoreTable(NormalizedScore, ScoreBounds, boolean) - Method in class com.itemanalysis.psychometrics.scaling.ScoreTable
 
NormalScores - Class in com.itemanalysis.psychometrics.statistics
 
NormalScores() - Constructor for class com.itemanalysis.psychometrics.statistics.NormalScores
 
nParam - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
 
nrow - Variable in class com.itemanalysis.psychometrics.polycor.AbstractPolychoricCorrelation
 
numberOfBins() - Method in interface com.itemanalysis.psychometrics.histogram.BinCalculation
Get the number of histogram bins.
numberOfBins() - Method in class com.itemanalysis.psychometrics.histogram.FreedmanDiaconisBinCalculation
Gets the number of bins calculated by the Freedman-Diaconis method.
numberOfBins() - Method in class com.itemanalysis.psychometrics.histogram.ScottBinCalculation
 
numberOfBins() - Method in class com.itemanalysis.psychometrics.histogram.SimpleBinCalculation
 
numberOfBins() - Method in class com.itemanalysis.psychometrics.histogram.SturgesBinCalculation
Gets the number of bins as computed by Sturges' method.
numberOfBins - Variable in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
 
numberOfCategories - Variable in class com.itemanalysis.psychometrics.irt.estimation.AbstractItemFitStatistic
 
numberOfCategories() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItem
Number of response categories
numberOfCategories() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalItemSummary
 
numberOfCategories() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
Gets the number of response options.
numberOfCategories() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
numberOfGroups() - Method in interface com.itemanalysis.psychometrics.mixture.MixtureModel
 
numberOfGroups() - Method in class com.itemanalysis.psychometrics.mixture.MvNormalMixtureModel
 
numberOfItems() - Method in class com.itemanalysis.psychometrics.measurement.ClassicalTestSummary
 
numberOfItems() - Method in class com.itemanalysis.psychometrics.measurement.TestSummary
 
numberOfNonexremeItems() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
An extreme iem is one in which all examinees with obtain the lowest possible item score or one in which all examinee obtain the highest possible item score.
numberOfNonextremePeople() - Method in class com.itemanalysis.psychometrics.irt.estimation.JointMaximumLikelihoodEstimation
An extreme person is one that obtains the minimum possible test score or the maximum possible test score.
numberOfPoints - Variable in class com.itemanalysis.psychometrics.distribution.AbstractDistributionApproximation
 
numberOfScoreLevels() - Method in class com.itemanalysis.psychometrics.measurement.DefaultItemScoring
Gets the number of score levels.
numberOfScoreLevels() - Method in interface com.itemanalysis.psychometrics.measurement.ItemScoring
 
numberOfStrata() - Method in class com.itemanalysis.psychometrics.irt.estimation.RaschScaleQualityStatistics
Number of distinct strata that are possible with the given estimates.
NumericItemResponseSummary - Class in com.itemanalysis.psychometrics.measurement
Summarizes item responses that are numeric.
NumericItemResponseSummary(VariableName) - Constructor for class com.itemanalysis.psychometrics.measurement.NumericItemResponseSummary
 
numRows(double[]) - Static method in class com.itemanalysis.psychometrics.optimization.ArrayMath
 
nVariables - Variable in class com.itemanalysis.psychometrics.factoranalysis.AbstractFactorMethod
 
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Skip navigation links